VAR Example Oil

Contents

VAR Example Oil#

by Professor Throckmorton
for Time Series Econometrics
W&M ECON 408/PUBP 616

VAR#

Big oil price increases are often associated with declines in production and asset prices. Read data on the price of crude oil (WTISPLC), industrial production (INDPRO), the S&P 500 (SP500), and the core consumer price index (CPILFESL).

# Libraries
from fredapi import Fred
import pandas as pd
# Setup acccess to FRED
fred_api_key = pd.read_csv('fred_api_key.txt', header=None).iloc[0,0]
fred = Fred(api_key=fred_api_key)
# Series to get
series = ['WTISPLC','INDPRO','SP500','CPILFESL']
rename = ['oil','prod','sp','price']
# Get and append data to list
dl = []
for idx, string in enumerate(series):
    var = fred.get_series(string).to_frame(name=rename[idx])
    dl.append(var)
    print(var.head(2)); print(var.tail(2))
             oil
1946-01-01  1.17
1946-02-01  1.17
              oil
2025-08-01  64.86
2025-09-01  63.96
              prod
1919-01-01  4.8654
1919-02-01  4.6504
                prod
2025-07-01  103.8194
2025-08-01  103.9203
                 sp
2015-10-29  2089.41
2015-10-30  2079.36
                 sp
2025-10-27  6875.16
2025-10-28  6890.89
            price
1957-01-01   28.5
1957-02-01   28.6
              price
2025-08-01  329.793
2025-09-01  330.542
# Concatenate data to create data frame (time-series table)
raw = pd.concat(dl, axis=1).sort_index()
# Make all columns numeric
raw = raw.apply(pd.to_numeric, errors='coerce')
# Resample/reindex to quarterly frequency
raw = raw.resample('ME').mean().dropna()
# Display dataframe
display(raw)
oil prod sp price
2015-10-31 46.22 100.1563 2084.385000 243.768
2015-11-30 42.44 99.4366 2080.616500 244.241
2015-12-31 37.19 98.9471 2054.079545 244.547
2016-01-31 31.68 99.4391 1918.597895 244.955
2016-02-29 30.32 98.9232 1904.418500 245.510
... ... ... ... ...
2025-04-30 63.54 103.6224 5369.495714 326.430
2025-05-31 62.17 103.6570 5810.919524 326.854
2025-06-30 68.17 104.2115 6029.951500 327.600
2025-07-31 68.39 103.8194 6296.498182 328.656
2025-08-31 64.86 103.9203 6408.949524 329.793

119 rows × 4 columns

# Scientific computing
import numpy as np
data = pd.DataFrame()
# log real oil price
data['oil'] = 100*(np.log(raw['oil']/raw['price']))
# log real SP500
data['sp'] = 100*(np.log(raw['sp']/raw['price']))
# log industrial production
data['prod'] = 100*np.log(raw['prod'])
# Sample
sample = data['04-30-2015':'12-31-2024']
display(sample)
oil sp prod
2015-10-31 -166.280435 214.601217 460.673197
2015-11-30 -175.006413 214.226408 459.952026
2015-12-31 -188.336761 212.817560 459.458536
2016-01-31 -204.538895 205.827541 459.954540
2016-02-29 -209.153012 204.859431 459.434379
... ... ... ...
2024-08-31 -142.817683 284.071677 463.491926
2024-09-30 -151.900902 286.338423 463.079310
2024-10-31 -149.705491 289.070597 462.706670
2024-11-30 -152.869136 291.129327 462.448544
2024-12-31 -152.836025 292.276288 463.516287

111 rows × 3 columns

# Johansen Cointegration Test
from statsmodels.tsa.vector_ar.vecm import coint_johansen
test = coint_johansen(sample, det_order=-1, k_ar_diff=2)
test_stats = test.lr1; crit_vals = test.cvt[:, 1]
# Print results
for r_0, (test_stat, crit_val) in enumerate(zip(test_stats, crit_vals)):
    print(f'H_0: r <= {r_0}')
    print(f'  Test Stat. = {test_stat:.2f}, 5% Crit. Value = {crit_val:.2f}')
    if test_stat > crit_val:
        print('  => Reject null hypothesis.')
    else:
        print('  => Fail to reject null hypothesis.')
H_0: r <= 0
  Test Stat. = 20.88, 5% Crit. Value = 24.28
  => Fail to reject null hypothesis.
H_0: r <= 1
  Test Stat. = 3.35, 5% Crit. Value = 12.32
  => Fail to reject null hypothesis.
H_0: r <= 2
  Test Stat. = 0.19, 5% Crit. Value = 4.13
  => Fail to reject null hypothesis.
# Select number of lags in VECM
from statsmodels.tsa.vector_ar.vecm import select_order
lag_order_results = select_order(
    sample, maxlags=8, deterministic='co')
print(f'Selected lag order (AIC) = {lag_order_results.aic}')
Selected lag order (AIC) = 1
# VAR model
from statsmodels.tsa.api import VAR
# make the VAR model
model = VAR(sample)
# Estimate VAR
results = model.fit(2)
# Assign impulse response functions (IRFs)
irf = results.irf(20)
# Plot IRFs
plt = irf.plot(orth=False,impulse='oil',figsize=(6.5,7.5));
plt.suptitle('');
_images/e00378d4f7c6f12cfec21730c102320c489b15f88bab12fa9ba135d5ddde0b00.png