VAR Example Oil
by Professor Throckmorton
for Time Series Econometrics
W&M ECON 408/PUBP 616
VAR¶
Big oil price increases are often associated with declines in production and asset prices. Read data on the price of crude oil (WTISPLC), industrial production (INDPRO), the S&P 500 (SP500), and the core consumer price index (CPILFESL).
# Libraries
from fredapi import Fred
import pandas as pd
# Setup acccess to FRED
fred_api_key = pd.read_csv('fred_api_key.txt', header=None).iloc[0,0]
fred = Fred(api_key=fred_api_key)
# Series to get
series = ['WTISPLC','INDPRO','SP500','CPILFESL']
rename = ['oil','prod','sp','price']
# Get and append data to list
dl = []
for idx, string in enumerate(series):
var = fred.get_series(string).to_frame(name=rename[idx])
dl.append(var)
print(var.head(2)); print(var.tail(2)) oil
1946-01-01 1.17
1946-02-01 1.17
oil
2025-05-01 62.17
2025-06-01 68.17
prod
1919-01-01 4.8654
1919-02-01 4.6504
prod
2025-05-01 103.6602
2025-06-01 104.0071
sp
2015-08-03 2098.04
2015-08-04 2093.32
sp
2025-07-30 6362.90
2025-07-31 6339.39
price
1957-01-01 28.5
1957-02-01 28.6
price
2025-05-01 326.854
2025-06-01 327.600
# Concatenate data to create data frame (time-series table)
raw = pd.concat(dl, axis=1).sort_index()
# Make all columns numeric
raw = raw.apply(pd.to_numeric, errors='coerce')
# Resample/reindex to quarterly frequency
raw = raw.resample('ME').mean().dropna()
# Display dataframe
display(raw)Loading...
# Scientific computing
import numpy as np
data = pd.DataFrame()
# log real oil price
data['oil'] = 100*(np.log(raw['oil']/raw['price']))
# log real SP500
data['sp'] = 100*(np.log(raw['sp']/raw['price']))
# log industrial production
data['prod'] = 100*np.log(raw['prod'])
# Sample
sample = data['04-30-2015':'12-31-2024']
display(sample)Loading...
# Johansen Cointegration Test
from statsmodels.tsa.vector_ar.vecm import coint_johansen
test = coint_johansen(sample, det_order=-1, k_ar_diff=2)
test_stats = test.lr1; crit_vals = test.cvt[:, 1]
# Print results
for r_0, (test_stat, crit_val) in enumerate(zip(test_stats, crit_vals)):
print(f'H_0: r <= {r_0}')
print(f' Test Stat. = {test_stat:.2f}, 5% Crit. Value = {crit_val:.2f}')
if test_stat > crit_val:
print(' => Reject null hypothesis.')
else:
print(' => Fail to reject null hypothesis.')H_0: r <= 0
Test Stat. = 22.94, 5% Crit. Value = 24.28
=> Fail to reject null hypothesis.
H_0: r <= 1
Test Stat. = 4.24, 5% Crit. Value = 12.32
=> Fail to reject null hypothesis.
H_0: r <= 2
Test Stat. = 0.40, 5% Crit. Value = 4.13
=> Fail to reject null hypothesis.
# Select number of lags in VECM
from statsmodels.tsa.vector_ar.vecm import select_order
lag_order_results = select_order(
sample, maxlags=8, deterministic='co')
print(f'Selected lag order (AIC) = {lag_order_results.aic}')Selected lag order (AIC) = 1
# VAR model
from statsmodels.tsa.api import VAR
# make the VAR model
model = VAR(sample)
# Estimate VAR
results = model.fit(2)
# Assign impulse response functions (IRFs)
irf = results.irf(20)
# Plot IRFs
plt = irf.plot(orth=False,impulse='oil',figsize=(6.5,7.5));
plt.suptitle('');