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ABSTRACT

When monetary policy faces a zero lower bound (ZLB) constraint on the nominal interest
rate, a minimum state variable (MSV) solution may not exist even if the Taylor principle holds
when the ZLB does not bind. This paper shows there is a clear tradeoff between the expected
frequency and average duration of ZLB events along the boundary of the convergence region—
the region of the parameter space where our policy function iteration algorithm converges to
an MSV solution. We show this tradeoff with two alternative stochastic processes: one where
monetary policy follows a 2-state Markov chain, which exogenously governs whether the ZLB
binds, and the other where ZLB events are endogenous due to discount factor or technology
shocks. We also show that small changes in the parameters of the stochastic processes cause
meaningful differences in the decision rules and where the ZLB binds in the state space.
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1 INTRODUCTION

Since the beginning of the Great Recession in late 2008, manycentral banks around the world
have targeted a policy rate near zero and promised to maintain a low rate until economic conditions
improve. Despite this policy and numerous unconventional policies, most of these countries face
elevated unemployment levels and anemic growth five years later. This experience has ignited new
research that studies the impacts of the zero lower bound (ZLB) on the nominal interest rate.

A ZLB constraint is similar to a monetary policy rule that occasionally pegs the nominal interest
rate, but where households never expect the interest rate tofall below zero. If the central bank does
not switch rules, then it is well known in a linear model that indeterminacy occurs when the Taylor
(1993) principle (i.e., the principle that monetary policypins down prices by adjusting the nominal
interest rate more than one-for-one with inflation) does nothold. This means that if the household
expects the central bank to always peg the nominal interest rate, then the price level, and hence
inflation, is not pinned down. If the household expects the central bank to occasionally peg the
nominal interest rate, then the fraction of time the centralbank satisfies the Taylor principlemay
provide enough price stability to deliver a determinate equilibrium [Davig and Leeper (2007)].

We first show the convergence region—the region of the parameter space where our policy
function iteration algorithm converges to a minimum state variable (MSV) solution—is identical
to the determinacy region that Davig and Leeper (2007) derive in a Fisherian economy with a
Markov-switching monetary policy rule. We then locate the convergence region in a nonlinear
New Keynesian model with a ZLB constraint. The boundary of the convergence region imposes
a clear tradeoff between the expected frequency and averageduration of ZLB events. We show
this tradeoff with two alternative stochastic processes: one where monetary policy follows a2-
state Markov chain, which exogenously governs whether the ZLB binds, and the other where ZLB
events are endogenous due to technology or discount factor shocks. We also show that small
changes in the parameters of the stochastic processes causemeaningful differences in the decision
rules and where the ZLB binds in the state space, which affectestimation and policy analysis.

Within the class of linear Markov-switching rational expectations models, Farmer et al. (2009,
2010), Barthélemy and Marx (2013), and Cho (2013) prove that non-MSV solutions may exist even
when the MSV solution is determinate. To be clear, our algorithm does not converge in regions
of the parameter space that are typically considered indeterminate (e.g., in fixed regime models
without a ZLB constraint, our algorithm only converges whenthe Taylor principle is satisfied), but
it cannot capture any non-MSV solutions that may exist when aconvergent MSV solution exists.1

Studying non-MSV solutions in models with a ZLB constraint is an important research topic,
but we believe locating regions of the parameter space that deliver a convergent MSV solution is
significant since most macroeconomic research, including estimation, is based on MSV solutions.

The ZLB constraint imposes an unavoidable nonlinearity in the monetary policy rule. The
literature has relied on several different techniques to deal with this challenge. One common
technique is to break the problem into pre- and post-ZLB periods [e.g., Braun and Körber (2011);
Braun and Waki (2006); Christiano et al. (2011); Eggertssonand Woodford (2003); Erceg and
Linde (2010); Gertler and Karadi (2011)]. With this approach, a large unanticipated shock causes
the ZLB to bind. Each period, there is a probability that the nominal interest rate exits the ZLB.
Once the nominal interest rate exits the ZLB, there is no chance of returning. The drawback with
this simplifying assumption is that if a shock causes the ZLBto bind in one period, there is no

1Barthélemy and Marx (2013) refer to unique bounded MSV solutions as bounded Markovian solutions.
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reason to expect that the same shock would not cause the ZLB tobind in a future period. Much of
the literature also linearizes the equilibrium system, except the monetary policy rule, which causes
approximation error [Braun et al. (2012); Fernández-Villaverde et al. (2012); Gavin et al. (2014)].
These approaches make the algorithm numerically tractablebecause they do not rely on a grid-
based solution method, but they also have drawbacks which motivate solving the fully nonlinear
model to accurately account for the expectational effects of going to and leaving the ZLB.

A recent segment of the ZLB literature uses global solution methods to solve fully nonlinear
models with a ZLB constraint [e.g., Aruoba and Schorfheide (2013); Basu and Bundick (2012);
Fernández-Villaverde et al. (2012); Gavin et al. (2014); Gust et al. (2013); Mertens and Ravn
(2013); Nakata (2012); Richter et al. (2013); Wolman (2005)]. However, all of the work on de-
terminacy uses a perfect foresight setup [e.g., Alstadheimand Henderson (2006); Benhabib et al.
(2001a,b)]. Although we do not provide formal proofs, our numerical convergence regions demon-
strate the restrictions these nonlinear solution methods face and the challenges of estimating con-
strained nonlinear models with a particle filter [Fernández-Villaverde and Rubio-Ramı́rez (2007)].

The paper is organized as follows.Section 2provides some numerical and analytical evidence
for the link between determinacy and convergence in a simpleFisherian economy.Section 3lays
out the constrained nonlinear model, baseline calibration, and our solution procedure.Sections 4
and5 define the two alternative stochastic processes that drive the economy to the ZLB and show
the tradeoff between the frequency and average duration of ZLB events.Section 6concludes.

2 THE L INK BETWEEN DETERMINACY AND CONVERGENCE: SOME EVIDENCE

Davig and Leeper (2007) study determinacy in linear models that do not include a ZLB constraint.
Their models contain two monetary policy rules—one that aggressively responds to inflation and
one that reacts less aggressively to inflation—governed by a2-state Markov chain. The special
case where the central bank pegs the nominal interest rate inone regime and obeys the Taylor
principle in the other regime is similar to a model with a ZLB constraint. Thus, we use their
regime switching setup as a benchmark for our algorithm. When we adopt their models (linear
Fisherian economy, linear New Keynesian economy), our algorithm produces convergence regions
that are identical to the determinacy regions they analytically derive. This means our algorithm is
non-convergent whenever the monetary policy parameters are outside their analytical determinacy
region and convergent whenever the Long-run Taylor Principle is met. Our numerical solutions to
these models also equal the MSV solutions they derive. This exercise does not constitute a formal
proof, but it does provide evidence that our algorithm captures determinate MSV solutions.

Our finding that there exists a tradeoff between the expectedfrequency and average duration
of ZLB events is similar to the conclusion in Davig and Leeper(2007). They prove that when
there are distinct monetary policy regimes, the Taylor principle does not need to hold in both
regimes to guarantee a unique bounded MSV solution. As long as one of the regimes satisfies
the Taylor principle, the central bank can passively respond to inflation (i.e., adjust the nominal
interest rate less than one-for-one with inflation) in the other regime and still deliver a determinate
solution. However, there are two key differences between our setups. First, an occasionally binding
ZLB constraint truncates the current and future nominal interest rate distributions, which affects
the household’s expectations and their decision rules. Second, the parameters of the exogenous
driving processes affect convergence, since the linearized version of a nonlinear model with a ZLB
constraint misses key interaction terms between exogenousvariables and expected inflation.
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To see how the parameters of the exogenous driving process matter for convergence, consider
the nonlinear analogue of the Fisherian economy Davig and Leeper (2007) study. A representative
household chooses{ct, bt}∞t=0 to maximizeE0

∑∞

t=0 β̃t log ct, wherect is consumption,̃β0 ≡ 1,
andβ̃t =

∏t
i=1 βi for t > 0. These choices are constrained byct+ bt = y+ it−1bt−1/pt, wherey is

a constant endowment,bt is a one-period nominal bond,it−1 is the gross nominal interest rate set
by the central bank, andπt = pt/pt−1 is the gross inflation rate. The fiscal authority does not issue
debt so bonds are in zero-net supply. The equilibrium systemis composed of

1 = itEt[βt+1/πt+1], (1)

it = ī(πt/π̄)
φ(st), (2)

βt = β̄(βt−1/β̄)
ρβ exp(υt), (3)

whereβt is the discount factor, which evolves according to (3) with |ρβ| < 1 andυt ∼ N(0, σ2
υ).

φ(st) is the policy response to changes in inflation, which followsa 2-state Markov chain with
transition matrixPr{st = j|st−1 = i} = pij , i, j ∈ {1, 2}. A bar denotes a steady-state value.

A second-order approximation of (1) around the deterministic steady state implies

ît + (̂it − Et[π̂t+1] + Et[β̂t+1])
2

︸ ︷︷ ︸

=0 (First Order)

= Et[π̂t+1]− Et[β̂t+1]− (Et[(π̂t+1 − β̂t+1)
2]− (Et[π̂t+1 − β̂t+1])

2)
︸ ︷︷ ︸

=0 (First Order, Jensen’s Inequality)

, (4)

where a hat denotes log deviation from the steady-state value. Up to a first order, this equation
reduces to the standard log-linear Fisher equation, which,when combined with (2), reduces to

φ(st)π̂t = Et[π̂t+1]−Et[β̂t+1].

If the monetary policy regime is fixed (φ(st) = φ), determinacy requiresφ > 1 (Taylor principle).
If monetary policy is state-dependent (φ(st = i) = φi), determinacy in the linear model requires

p11(1− φ2) + p22(1− φ1) + φ1φ2 > 1. (Long-run Taylor Principle)

Neither of these conditions include the parameters of the discount factor process. This is a byprod-
uct of first-order approximations, which remove all interaction terms between the expected dis-
count factor and expected inflation. With a higher order approximation, such as the second-order
approximation in (4), these interaction terms appear and affect convergence. When fluctuations
in the discount factor are more persistent, it causes more persistent deviations of inflation from its
steady state, which shrinks the convergence region. As an example,figure 1shows the convergence
regions (shaded) for the state-dependent log-linear modeland the nonlinear model withρβ = 0.85
andρβ = 0.95 in (φ1, φ2)-space.2 The convergence region is smaller in the nonlinear model and
decreases withρβ . However, changes toσβ do not influence the convergence region since it only
affects the magnitude of the shock and not the household’s consumption/saving decision.

In models with a ZLB constraint, both the persistence and standard deviation of the exogenous
driving processes affect the convergence region. It is wellknown that these models contain two
deterministic equilibria [Benhabib et al. (2001a,b)]. Specifically, there are two nominal interest
rate/inflation rate pairs consistent with the steady-stateequilibrium system. In one case the central
bank meets its positive inflation target, while in the other,deflation occurs. Similar to the sunspot

2For the purposes of this exercise, we fixβ̄ = 0.99, π̄ = 1.005, p11 = 0.8, p22 = 0.95, andσυ = 0.0005.
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Figure 1: Fisherian economy convergence (shaded) regions in (φ1, φ2)-space. We set(p11, p22) = (0.8, 0.95).

shocks in Aruoba and Schorfheide (2013) and the confidence shocks in Mertens and Ravn (2013),
exogenous switches in the monetary policy state that occur in our model cause the economy to
switch between two states, but it doesnot necessarily imply that multiple MSV solutions exist
in a stochastic economy.3 As long as there is a sufficient expectation of returning to a monetary
policy rule that obeys the Taylor principle, we show that an MSV solution exists. Our algorithm
does not converge to the deflationary equilibrium because itis not stable in expectation. That is,
in the deflationary equilibrium there is not enough price stability to reestablish that equilibrium
when sufficiently large shocks hit the economy, which is similar to points that Christiano and
Eichenbaum (2012) make about E-learnability. They contendthat when the model with a ZLB
constraint is restricted to the class of equilibria that areE-learnable, it has a unique solution.

To understand this point more clearly, suppose the economy begins in a state where the nom-
inal interest rate is stuck at its ZLB and inflation is negative. In a deterministic environment,
households have dogmatic expectations, meaning that they never expect to leave this state, and an
equilibrium exists. This fact is in sharp contrast with a stochastic environment, where households
form expectations over the complete distribution of shocks. In our exogenous and endogenous ZLB
setups, households place probability mass on both the nominal interest rate being positive and zero
in expectation, so that on average they always expect a positive nominal interest rate. Thus, the
deflationary state cannot be an equilibrium since the expected nominal interest rate is never zero,
and the stochastic economy will always gravitate toward thepositive inflation equilibrium.

3 MODEL, BASELINE CALIBRATION , AND SOLUTION METHOD

At the ZLB, monetary policy cannot directly affect the real interest rate to stabilize inflation. With-
out price adjustment costs or sticky prices, such as in the Fisherian economy described above, no
region of the parameter space delivers a convergent solution even if ZLB events are infrequent. In
a new Keynesian model, nominal frictions anchor prices at the ZLB so that a strong enough expec-
tation of leaving the ZLB produces a convergent solution. Weshow the convergence regions under

3Aruoba and Schorfheide (2013) discuss sunspot equilibria,but these arenot the same sunspots Farmer et al. (2009,
2010) and Cho (2013) emphasize, since they omit the non-MSV component from their solution.
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alternative parameterizations using a conventional New Keynesian model with a ZLB constraint.

3.1 MODEL A representative household chooses{ct, nt, bt}∞t=0 to maximize expected lifetime
utility, given by,E0

∑∞

t=0 β̃t{c1−σ
t /(1 − σ) − χn1+η

t /(1 + η)}, where1/σ is the elasticity of in-
tertemporal substitution,1/η is the Frisch elasticity of labor supply,ct is consumption of the final
good,nt is labor hours,̃β0 ≡ 1, andβ̃t =

∏t
i=1 βi for t > 0. βi is the subjective discount fac-

tor in periodi. These choices are constrained byct + bt + τt = wtnt + rt−1bt−1/πt + dt, where
πt = pt/pt−1 is the gross inflation rate,wt is the real wage rate,τt is a lump-sum tax,bt is a one-
period real bond,rt is the gross nominal interest rate, anddt are profits from intermediate firms.
The optimality conditions to the household’s problem imply

wt = χnη
t c

σ
t , (5)

1 = rtEt{βt+1(ct/ct+1)
σ/πt+1}. (6)

The production sector consists of a continuum of monopolistically competitive intermediate
goods firms and a perfectly competitive final goods firm. Each firm i ∈ [0, 1] in the intermedi-
ate goods sector produces a differentiated good,yt(i), according toyt(i) = atnt(i), whereat is
technology andnt(i) is the level of employment used by firmi. The final goods firm purchases
yt(i) units from each intermediate firm to produce the final good,yt ≡ [

∫ 1

0
yt(i)

(θ−1)/θdi]θ/(θ−1),
according to a Dixit and Stiglitz (1977) aggregator, whereθ > 1 is the price elasticity of de-
mand between intermediate goods. Profit maximization yields the demand function for goodi,
yt(i) = (pt(i)/pt)

−θyt, wherept = [
∫ 1

0
pt(i)

1−θdi]1/(1−θ) is the final good price. Each interme-
diate firm chooses its price level,pt(i), to maximize the expected present value of real profits,
Et

∑
∞

k=t qt,kdk(i), whereqt,t ≡ 1, qt,t+1 = βt+1(ct/ct+1)
σ is the pricing kernel between periods

t and t + 1, andqt,k ≡
∏k

j=t+1 qj−1,j. Following Rotemberg (1982), each firm faces a cost to
adjusting its price, which emphasizes the potentially negative effect that price changes can have on
customer-firm relationships. Using the functional form in Ireland (1997), firmi’s real profits are

dt(i) =

[(
pt(i)

pt

)1−θ

− wt

at

(
pt(i)

pt

)−θ

− ϕ

2

(
pt(i)

π̄pt−1(i)
− 1

)2
]

yt,

whereϕ ≥ 0 determines the size of the adjustment cost,wt/at is the real marginal cost of produc-
ing a unit of output, and̄π is the steady-state gross inflation rate. In a symmetric equilibrium, all
intermediate goods firms make the same decisions and the optimality condition reduces to

ϕ
(πt

π̄
− 1

) πt

π̄
= (1− θ) + θ(wt/at) + ϕEt

[

qt,t+1

(πt+1

π̄
− 1

) πt+1

π̄

yt+1

yt

]

. (7)

In the absence of price adjustment costs (i.e.,ϕ = 0), the real marginal cost equals(θ − 1)/θ,
which is the inverse of the firm’s markup of price over marginal cost.

Each period the fiscal authority finances its spending,ḡ, by levying lump-sum taxes (τt = ḡ).
The resource constraint isct + ḡ = [1 − ϕ(πt/π̄ − 1)2/2]yt ≡ yadjt , whereyadjt includes the
value added by intermediate firms, which is their output minus quadratic price adjustment costs. A
competitive equilibrium consists of sequences of quantities{ct, nt, bt, yt}∞t=0, prices{wt, rt, πt}∞t=0,
and exogenous variables{βt, at}∞t=0 that satisfy the household’s and firm’s optimality conditions
[(5),(6),(7)], the production function,yt = atnt, the monetary policy rule (defined below), the
stochastic processes (defined below), bond market clearing, bt = 0, and the resource constraint.
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3.2 CALIBRATION We calibrate the model at a quarterly frequency using valuesthat are com-
mon in the literature. We set̄β = 0.99 andσ = 1, implying log utility in consumption. The Frisch
elasticity of labor supply,1/η, is set to1 and the leisure preference parameter,χ, is set so that
steady-state labor equals1/3 of the available time. The price elasticity of demand between inter-
mediate goods,θ, is set to6, which corresponds to an average markup of price over marginal cost
equal to20 percent. The costly price adjustment parameter,ϕ, is set to58.25, which is similar to a
Calvo (1983) price-setting specification where prices change on average once every four quarters
(ω = 0.75).4 Steady-state technology,ā, is normalized to1. In the policy sector, the steady-state
gross inflation rate,̄π, is set to1.005, which implies an annual (net) inflation rate target of2 percent.
The steady-state ratio of government spending to output is calibrated to20 percent.

3.3 SOLUTION METHOD AND DEFINITION OF CONVERGENCE We solve the fully nonlinear
model using the policy function iteration algorithm described in Richter et al. (2013), which is a
numerical byproduct of using monotone operators to prove existence and uniqueness of equilibria.5

This solution method discretizes the state space and uses time iteration to solve for the updated
decision rules until the tolerance criterion is met. To account for the ZLB in the endogenous setup,
we set the gross nominal interest rate equal to1 on any node in the state space where the Taylor rule
implies a value less than one. We obtain initial conjecturesfor the constrained nonlinear model
using the solution to the log-linear model without the ZLB imposed. We find that this guess is very
reliable and no evidence it affects convergence. For example, when we solve for the boundary of
the convergence region using this guess for each parameterization, it produces the same boundary
as when we use the nonlinear solution to a model with a similarparameterization as our guess.

We classify the algorithm asnon-convergentwhenever the iteration step, defined as the maxi-
mum distance between decision rule values on successive iterations, increases at an increasing rate
for more than100 iterations or when all of the values in any decision rule consistently drift (e.g.,
negative consumption on any node or more than50 percent deflation on every node). Additionally,
when ZLB events are endogenous, we require that the ZLB bindson fewer than50 percent of the
nodes in the state space. We have observed that the percentage of nodes where the ZLB binds
converges to100 percent, whenever more than 50 percent of the nodes bind in aniteration. At that
point, the inflation policy function converges to zero at allnodes in the state space, which is not
a valid solution. We classify the algorithm asconvergentwhenever the iteration step is less than
1−13 (the tolerance criterion) for10 successive iterations, which prevents the algorithm from im-
mediately converging when the tolerance criterion is first met. To provide evidence that each MSV
solution is locally unique, we randomly perturb the converged decision rules in multiple directions
and check that the algorithm converges back to the same solution.6 To ensure that the solution is

4If ω represents the fraction of firms that cannot adjust prices each period, thenϕ = ω(θ−1)/[(1−ω)(1−βω)] in a
linear model with a zero-inflation steady state, which provides a reasonable estimate of the adjustment cost parameter.

5Coleman (1991) proves existence and uniqueness of an equilibrium in a nonlinear stochastic production economy
with an income tax. Greenwood and Huffman (1995) adapt this proof to a more general neoclassical model, including
one with monopolistic competition. Coleman (1997) generalizes these proofs to allow for an endogenous labor supply
and Datta et al. (2005, 2002); Mirman et al. (2008) extends them to more complex setups. The monotone mapping
results in these papers are attractive because they serve asthe theoretical foundations of our numerical algorithm.

6Cochrane (2011) argues that the existence of explosive inflation paths in a New Keynesian model permit a bounded
solution. Our numerical solution method cannot capture explosive paths, which are not observed in the data. We focus
on conventional bounded equilibria. Braun et al. (2012) demonstrate that there are multiple equilibria forsomesettings
of parameters and shocks. For example, a second equilibriumexists if a shock to the discount factor is greater than

6
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bounded, we simulate the model and check that it converges toa stochastic steady state. For a
more formal description of the numerical algorithm and convergence, see appendixA.

4 EXOGENOUSZLB EVENTS: MONETARY POLICY SWITCHING

In this section, the central bank sets the gross nominal interest rate according to

rt =

{

r̄(πt/π̄)
φπ(yadjt /ȳ)φy for st = 1

1 for st = 2
, (8)

whereφπ andφy are the policy responses to inflation and the adjusted outputgap. The mone-
tary policy state,st, evolves according to a2-state Markov chain with transition matrixPr{st =
j|st−1 = i} = pij , for i, j ∈ {1, 2}. Whenst = 1, the central bank obeys the Taylor principle and
whenst = 2, the central bank exogenously pegs the gross nominal interest rate at1. We setat = ā
andβt = β̄. Thus, all ZLB events in this section are due to exogenous changes inst.

The exogenous switches between the two monetary policy states are similar to large discre-
tionary shocks. When the nominal interest rate switches from state 1 to state 2 (state 2 to state 1),
the nominal interest rate falls (rises) sharply. This meansthat expectations about the future state
play a key role in determining inflation. To understand how inflation changes when ZLB events
are exogenous, assume the state is fixed, but there is a probability it changes. Whenst = 1 and
p11 < 1, the household expects a lower future nominal interest rate, which increases expected fu-
ture consumption growth and drives up inflation. Whenst = 2, the household expects to leave the
ZLB and the future nominal interest rate to rise. This reduces expected future consumption growth,
which would normally reduce inflation, but since the nominalrate is stuck at1, inflation rises to
clear the bond market. Thus, the possibility of ZLB events increases inflation in both states.

Figure 2aplots the convergence (shaded) regions in(p11, p22)-space forφπ ∈ {1.3, 1.5, 1.7}.
To isolate the impact ofφπ on the convergence region, we initially setφy = 0. The boundary of the
shaded region for eachφπ represents the largestp22 value that yields a convergent solution for each
p11 value. These results show a clear tradeoff betweenp11 andp22. When there is a low probability
of going to the ZLB (i.e., a highp11 value), it is possible to have a high probability of staying at
the ZLB (i.e., a highp22 value) and still guarantee a convergent solution. This suggests that there
is a tradeoff between the expected frequency and average duration of ZLB events. To see this more
clearly,figure 2bplots the probability of going to the ZLB (i.e.,p12) as a function of the average
duration of each ZLB event (i.e.,1/p21) for each value ofφπ. When the average duration of ZLB
events is short, the convergence region permits a high expected frequency of ZLB events. However,
as the average duration of ZLB events increases, the maximumexpected frequency of ZLB events
must decrease to avoid the non-convergence (non-shaded) region of the parameter space.

These results show that this model does not generateaverageZLB events that are consis-
tent with observed ZLB events, which is similar to the pointsmade in Chung et al. (2012) and
Fernández-Villaverde et al. (2012); however, it is possible for longer ZLB events to occur and still
deliver a convergent solution, because the household places little weight on these outcomes in their
expectations. For example, whenφπ = 1.5, p11 = 0.95, andp22 = 0.5, the average ZLB event is
only 2 quarters, but the maximum ZLB event in a500,000 quarter simulation is15 quarters, which

7.31 percent. Given the parameters we adopt, a change in the discount factor of even1.5 percent is very unlikely.
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Figure 2: Convergence regions across alternative monetarypolicy responses to inflation (φπ).

is closer to ZLB events observed in the data. Furthermore, Gust et al. (2013) argue that this average
duration is consistent with the expectations found in financial market and survey data.

The convergence region also depends on how strongly the central bank responds to inflation
when the ZLB does not bind. The darker shaded regions represent the additional area of the pa-
rameter space that delivers a convergent solution whenφπ increases. If the monetary authority
responds more aggressively to inflation whenst = 1 (i.e., a higherφπ) andp11 < 1, the con-
vergence region widens, since greater price stability whenst = 1 helps offset the destabilizing
influence ofst = 2. This means the convergence region permits longer and/or more frequent trips
to the ZLB. However, it is interesting that regardless of thevalue ofφπ, the longest average ZLB
event inside the convergence region is the same (2.3 quarters). Asp11 rises, the expected frequency
of ZLB events declines. This implies thatst = 2 has a decreasing effect onst = 1 and the stabiliz-
ing effect of additional price stability inst = 1 has a smaller effect on overall price stability. Thus,
the additional area of the parameter space that delivers convergence shrinks asp11 increases. When
p11 = 1, any ZLB event is completely unexpected by the household. This means thatst = 2 has
no effect on the decision rules inst = 1 and increases inφπ do not widen the convergence region.
In short, asp11 → 1, the model approaches a fixed-regime setup where increases in φπ beyond a
minimum threshold have no effect on the convergence region in the parameter space.

When the central bank responds to the adjusted output gap (φy > 0), it also affects the con-
vergence region.Figure 3plots these regions forφy ∈ {0, 0.1, 0.2}. Since the real interest rate is
higher in state 1, adjusted output is below its steady state,which corresponds to a negative output
gap (i.e.,yadjt /ȳ < 0). Thus, a largerφy reduces the nominal interest rate in state 1 for a givenφπ,
because the countercyclical monetary policy offsets part of the response to changes in inflation.
With less price stability in state 1, the convergence regionshrinks. Thus, higher values ofφy have
a qualitatively similar effect on the convergence region aslower values ofφπ when ZLB events are
exogenous. Once again, the differences between these convergence regions shrink asp11 increases.

In general, a larger response by the central bank to increases in household demand provides
additional price stability in state 1. However, it is destabilizing in state 2, because the household
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Figure 3: Convergence regions across alternative monetarypolicy responses to the adjusted output gap (φy).

expects a relatively higher future nominal interest rate, which increases inflation at the ZLB. The
strengths of these two competing effects change along the edge of the convergence region. When
p11 is not too high, state 2 has a larger effect on state 1. This means the maximum value ofp22
and the average duration of ZLB events is low. Thus, the stabilizing effect of state 1 dominates
and the convergence region expands. Asp11 increases, the effect of state 2 on state 1 declines and
the convergence region expands less. At high values ofp11, which permit high values ofp22, it is
possible that the destabilizing effect of state 2 dominatesand for the convergence region to shrink.
This is what happens with large values ofφπ.7 Regardless, whenp11 = 1, state 2 has no effect on
state 1 and the monetary policy parameters have no impact on the convergence region.

A common theme in the convergence regions shown above is thatprice stability plays a key
role. In addition to the monetary policy parameters, the degree of price stickiness also heavily
influences price stability.Figure 4shows the convergence regions forω ∈ {0.67, 0.75}. With a
lower degree of price stickiness (i.e., a lowerω), firms have a greater ability to adjust prices with
the monetary policy state. When the average duration of ZLB events is high (i.e., a highp22), lower
price stickiness shrinks the convergence region, because expected prices are less anchored by the
Taylor rule in state 1. For example, ifω declines from0.75 to 0.67, the maximum average duration
of ZLB events declines from2.3 quarters to1.85 quarters. Asp11 and p22 fall, the household
expects to visit the ZLB more often but for fewer quarters on average. This means the benefit of
additional price stability declines and the convergence regions shrink. Notice that the convergence
regions twist. While the convergence region generally shrinks for lower values ofω, at low enough
values ofp11 the region expands. This is because it is less costly for firmsto adjust prices consistent
with state 2 when the expected duration of staying in state 2 is very short.

The other deep parameters in the model (e.g.,σ, η, β̄) also affect the size of the convergence
region. When the degree of risk aversion,σ, is higher, the household is less willing to intertempo-
rally substitute consumption goods. When the Frisch elasticity of labor supply,1/η, is larger, the

7Barthélemy and Marx (2013) find that a strong response to inflation shrinks the determinacy region in a linear
model with a Markov-switching monetary policy rule. The intuition for their result is similar to what we describe.
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Figure 4: Convergence regions across alternative degrees of price stickiness (ω).

household’s willingness to supply labor is more sensitive to changes in the real wage rate. Both
of these effects make hours worked, consumption, and the inflation rate less volatile when the
ZLB binds, which expands the convergence region. When the household is more patient (i.e., a
higher β̄), the steady state nominal interest rate is lower, which reduces the demand-side effects
of switching states. This makes inflation less volatile and also expands the convergence region.
Many models also include a smoothing component in the monetary policy rule. An increase in this
parameter shrinks the convergence region because it reduces the response to the fundamentals.

5 ENDOGENOUSZLB EVENTS: EXOGENOUSSHOCKS

This section replaces the exogenous Markov-switching process, given in (8), with either an AR(1)
technology or discount factor process that determines the expected frequency and average duration
of ZLB events. We study these two shocks because they are the most common shocks used in the
ZLB literature.8 The central bank sets the gross nominal interest rate according to

rt = max{1, r̄(πt/π̄)
φπ}. (9)

Unlike Eggertsson and Woodford (2003) and others, we chose to use a continuous processes for
technology or the discount factor rather than a two-state Markov chain for two main reasons.
First, the results are more relevant to researchers interested in estimating ZLB models, since most
estimation specifies continuous processes. Second, even with a two-state Markov chain, it would
be difficult to compare the results from the exogenous and endogenous setups. For example, with
a two-state Markov chain on the discount factor, the jump necessary to make the ZLB bind is a
function of the transition matrix. Thus, it is not possible to fix aβ in state 2 that ensures the ZLB
binds over the entire convergence region in (p11, p22)-space. In other words, theβ in state 2 would
sometimes be too low to make the ZLB bind and sometimes too high, which affects convergence.
Thus,β in state 2 would need to change over the (p11, p22)-space. However, that change make it
difficult to directly compare the results to the results fromthe exogenous setup.

8For a complete picture of the solution to New Keynesian models with and without capital see Gavin et al. (2014).

10



RICHTER AND THROCKMORTON: THE ZLB: FREQUENCY, DURATION, AND CONVERGENCE

Section 4makes clear that when episodes at the ZLB are exogenous, the boundary of the
convergence region imposes a tradeoff between the expectedfrequency and average duration of
ZLB events. This same tradeoff exists when ZLB events are endogenous. We discretize the state,
zt−1 (either technology,at−1, or the discount factor,βt−1), into N elements such thatzt−1 ∈
{z1, . . . , zN}. Let st ∈ {1, 2} indicate that the ZLB is either not binding or binding, respectively.
Given the MSV solution to the model under a particular parameterization, letn denote the index
corresponding to the minimum value of the state variable where the ZLB binds, which partitions the
state-space into two subsets. Denote the corresponding sets of indices asI1,t−1 = {1, . . . , n− 1}
andI2,t−1 = {n, . . . , N}. The probability of going to the ZLB (the analog ofp12 = 1 − p11 in the
transition matrix defined insection 4) is given by

Pr{st = 2|st−1 = 1} =

∑

i∈I1,t−1
Pr{st = 2|zt−1 = zi}φ(zi|z̄, σz)
∑

i∈I1,t−1
φ(zi|z̄, σz)

,

where

Pr{st = 2|zt−1 = zi} =

∑

j∈J2,t(i)
φ(εj|0, σε)

∑M
j=1 φ(εj|0, σε)

= π−1/2
∑

j∈J2,t(i)

φ(εj|0, σε), (10)

andφ(x|µ, σ) is the normal probability density function, given meanµ and standard deviationσ.
For eachzt−1, there is a vector of realizations ofzt, where each realization corresponds to a Gauss-
Hermite quadrature node,εj, j ∈ {1, . . . ,M} (the roots of the Hermite polynomial).J2,t(i) is the
set of indices where the ZLB continues to bind given the technology statezt−1 = zi.

5.1 TECHNOLOGY SHOCKS In this section, technology evolves according to

at = ā(at−1/ā)
ρa exp(εt), (11)

where0 ≤ ρa < 1 andεt ∼ N(0, σ2
ε). The discount factor is constant (βt = β̄ for all t). We define

σa = σε/(1 − ρ2a)
1/2 as the standard deviation of (11). Positive technology shocks act as positive

aggregate supply shocks. At high technology levels, firms’ per unit marginal cost of production is
low. Firms react by lowering their prices and raising their production. This causes deflation and,
given a sufficiently high level of technology, the (net) nominal interest rate falls to zero according
to the Taylor rule in (9). Thus, ZLB events are endogenous due to technology shocks.

Figure 5aplots (10) as a function of the technology state for three alternativeparameterizations
of (11). The shaded region corresponds to technology states wherethe ZLB binds, which begins
when technology is3.5 percent above its steady state. The three combinations of(ρa, σε) are
chosen to keep the boundary of the ZLB region fixed. In technology states below the boundary,
the probability on the vertical axis is the probability of going to the ZLB in the next quarter.
In technology states above the boundary, it is the probability of staying at the ZLB. This figure
demonstrates the tradeoff between the probability of hitting the ZLB and the average duration of
ZLB events. Asρa increases andσε decreases, it is less likely the ZLB will bind in technology
states below the boundary and more likely the ZLB will continue to bind once the ZLB is hit.

The combinations of(ρa, σε) shown infigure 5aarenot on the boundary of the convergence
region in(ρa, σε)-space. The boundary of the ZLB region is a function of(ρa, σε), which affects
the probabilities of going to and staying at the ZLB. Since ZLB events are endogenous due to (11),
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Figure 5: Properties of the model where ZLB events arise endogenously due to technology shocks.

there is no way to map(ρa, σε) into equivalent(p11, p22) values and generate a picture equivalent
to figure 2(i.e., we cannot increasep22 by changing(ρa, σε) without alteringp11). Thus, fixing the
boundary of the ZLB region offers the closest comparison to the Markov chain process insection 4.

Figure 5bshows that along the boundary of the convergence region (shaded), there is a clear
tradeoff between the persistence of the technology process, ρa, and the standard deviation of the
shock,σε. As the persistence of the process increases, the standard deviation of the shock must
decline to avoid a non-convergence region. This tradeoff reflects thatρa andσε both impact the
expected frequency and average duration of ZLB events, asfigure 5ashows. Once again, the
monetary policy response to inflation,φπ, affects the size of the convergence region. For a given
ρa, an increase inφπ permits a largerσε, as prices are more stable when the ZLB does not bind.

The fact that the parameters of the stochastic process impact the convergence region is sig-
nificant, because these parameters do not affect convergence in linearized models, regardless of
whether the ZLB is imposed. In models that impose a ZLB, it is common to linearize every
equation in the equilibrium system, except for the Taylor rule, and assume ZLB events last for a
predetermined duration with no probability of recurrence.This approach does not account for the
expectational effects of going to and exiting the ZLB, whichare critical for convergence.

Figure 6compares the inflation rate decision rules across two parameterizations of (11), both
of which are on the boundary of the convergence region in(ρa, σε)-space. The horizontal dashed
line is the steady-state inflation rate (π̄ = 1.005). When the technology state equals the steady-
state technology level (ā = 1), the deviations of the inflation rate from its steady-statevalue
provide a measure of the expectational effect of hitting theZLB. The shaded region represents
values of the inflation rate where the ZLB binds. Whenσε is relatively small (dashed line), the
expectational effect is small because the likelihood of hitting the ZLB in expectation is also small.
As σε increases, andσa increases with it, the expectational effect of hitting the ZLB also increases.

When the ZLB binds, higher real interest rates reduce consumption and put downward pressure
on inflation as firms respond to the lower demand. Thus, when there is a higher probability of going
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to the ZLB (solid line), the slope of the inflation rate policyfunction is steeper. Since the downward
pressure on inflation happens across the entire state space,it also influences where the ZLB first
binds in the state space. For smaller standard deviations of(11), the probability of hitting the ZLB
in expectation is smaller and the boundary of the ZLB region lies at a higher technology state.
Unlike log-linearized models, where the calibration of thestochastic process has a much smaller
effect on the decision rules, these results imply that changes in the calibration of the stochastic
process can significantly impact the quantitative properties of the model.

5.2 DISCOUNT FACTOR SHOCKS In this section, the discount factor evolves according to

βt = β̄(βt−1/β̄)
ρβ exp(υt), (12)

where0 ≤ ρβ < 1 andυt ∼ N(0, σ2
υ). Technology is constant (at = ā for all t). We define

σβ = συ/(1 − ρ2β)
1/2 as the standard deviation of (12). Positive discount factor shocks act as

negative aggregate demand shocks. A high discount factor means that the household is more
patient and elects increase leisure and to defer consumption to future periods. Firms respond to
the lower demand by cutting output and reducing their prices. This causes deflation and, given a
sufficiently high discount factor, the (net) nominal interest rate falls to zero according to the Taylor
rule in (9). Thus, ZLB events are endogenous due to discount factor shocks.

Figure 7areproducesfigure 5 for three alternative parameterizations of the discount factor
process given in (12). The shaded region corresponds to discount factor states where the ZLB
binds, which begins when the discount factor is0.9 percent above its steady-state value. Once
again, there is a clear tradeoff between the expected frequency and average duration of ZLB events.

Figure 7bshows the convergence regions in(ρβ , συ)-space. For a given persistence value, the
discount factor process permits a much smaller shock size than the technology process. This is be-
cause the discount factor directly affects the household’swillingness to intertemporally substitute,
which is critical for convergence since it affects expectedinflation. As an example, the maximum
shock size is only0.0003 whenρβ = 0.95. This is significant because estimates of this parameter
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Figure 7: Properties of the model where ZLB events arise endogenously due to discount factor shocks.

using a log-linear model without a ZLB constraint are outside of this region. The data prefers
highly persistent shocks (i.e.,ρβ > 0.95) with a standard deviation that is over four times the
maximum value inside the convergence region. While the model is slightly different, the estimates
of the constrained nonlinear model in Gust et al. (2013) are also well outside of the convergence
region. They estimate thatρβ = 0.88 andσυ = 0.0025, which may be possible in our model with
a persistent Taylor rule or more price stickiness. The data also prefers highly persistent technology
shocks, but it does not pose as serious a problem for estimation because the constrained model
permits large shocks. Whenρa = 0.95 andφπ = 1.5, the maximum shock size is0.75 percent.

Figure 8plots the decision rules for inflation. The slope is steeper (more negative) when the
discount factor is more persistent. In discount factor states where the ZLB does (does not) bind,
inflation is lower (higher). At the ZLB, higher persistence means the household expects relatively
higher consumption growth. Since the nominal interest ratedoes not respond to inflation, the only
way for the real interest rate to rise and for the bond market to clear is if inflation falls sharply.
The expectational effect of the ZLB in discount factor states where the ZLB does not bind also
drives down inflation. In states further from ZLB region, theexpectational effect is weaker and the
higher demand associated with a lower, more persistent discount factor increases inflation. Once
again, these results show that even small changes in the parameterization of the exogenous driving
process significantly affect the decision rules, and hence the quantitative properties of the model.

6 CONCLUSION

This paper demonstrates that the boundary of the convergence region imposes a clear tradeoff
between the expected frequency and average duration of episodes at the ZLB, regardless of whether
ZLB events arise exogenously or endogenously. This tradeoff is critical for at least three reasons.
First, even though the Taylor principle does not hold at the ZLB, it shows that central banks can
still pin down prices when the nominal interest rate is pegged at its ZLB, so long as households
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have a strong enough expectation of returning to a regime where the central bank aggressively
responds to inflation. Second, it imposes an important constraint on the parameter space that the
econometrician must account for when estimating the fully nonlinear model. Third, it implies
that small changes in the parameters of stochastic processes significantly impact the decision rules
and the state at which the ZLB first binds. This means accurately calibrating or estimating the
parameters of the exogenous driving processes is particularly important for analysis at the ZLB.
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A NUMERICAL ALGORITHM

A formal description of the numerical algorithm begins by writing the model compactly as

E[f(vt+1,wt+1,vt,wt)|Ωt] = 0,

wheref is vector-valued function that contains the equilibrium system,v is a vector of exogenous
variables,w is a vector of endogenous variables, andΩt = {M,P, zt} is the household’s infor-
mation set in periodt, which contains the structural model,M , its parameters,P , and the state
vector,z. In the model where ZLB events are exogenous,v = z = (s). When ZLB events are
endogenous due to technology shocksv = (a, ε) andz = a and when ZLB events are endogenous
due to discount factor shocksv = (β, υ) andz = β. In all models,w = (c, π, y, n, w, r).

Policy function iteration approximates the vector of decision rules,Φ, as a function of the state
vector,z. The time-invariant decision rules for the exogenous modelare

Φ(zt)
︸ ︷︷ ︸

True RE Solution

≈ Φ̂(zt)
︸ ︷︷ ︸

Approximating
Function

.

We choose to iterate onΦ = (c, π) so that we can easily solve for future variables that enter
the household’s expectations usingf . Each continuous state variable inz is discretized intoNd

points, whered ∈ {1, . . . , D} andD is the dimension of the state space. The discretized state
space is represented by a set of uniqueD-dimensional coordinates (nodes). In general, we set
the bounds of continuous stochastic state variables to encompass99.999 percent of the probability
mass of the distribution. We specify1001 grid points for each continuous state variable and use
the maximum number of Gauss-Hermite nodes (66) for each continuous shock. These techniques
minimize extrapolation and ensure that the location of the kink in the decision rules is accurate.

The following outline summarizes the policy function algorithm we employ. Leti ∈ {0, . . . , I}
index the iterations of the algorithm andn ∈ {1, . . . ,ΠD

d=1N
d} index the nodes.

1. Obtain initial conjectures for the approximating functions,ĉ0 andπ̂0, on each node, from the
log-linear model without the ZLB imposed. We usegensys.m to obtain these conjectures.

2. Fori ∈ {1, ..., I}, implement the following steps:

(a) On each node, solve for{yt, rt, nt, wt} given ĉi−1(z
n
t ) andπ̂i−1(z

n
t ) with the ZLB im-

posed.

(b) In the endogenous model, linearly interpolate{ct+1, πt+1} given{εmt+1}Mm=1. Each of
theM valuesεmt+1 are Gauss-Hermite quadrature nodes. We use Gauss-Hermite quadra-
ture to numerically integrate, since it is very accurate fornormally distributed shocks.
We use piecewise linear interpolation to approximate future variables that show up in
expectation, since this approach more accurately capturesthe kink in the decision rules
than continuous functions such as cubic splines or Chebyshev polynomials.9

9Aruoba and Schorfheide (2013) use a linear combination of two Chebyshev polynominals—one that captures
the dynamics when the ZLB binds and one that captures the dynamics when the Taylor principle holds. While this
approach is more accurate than using one Chebyshev polynomial, there is no guarantee that it will accurately locate
the kink. Moreover, Chebyshev polynomials can lead to largeapproximation errors due to extrapolation. With linear
interpolation, a dense state space will lead to more predictable extrapolation and more accurately locate the kink
[Richter et al. (2013)].
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(c) We use the nonlinear solver,csolve.m, to minimize the Euler equation errors. On
each node, numerically integrate to approximate the expectation operators,

E
[
f(xk

t+1,x
n
t )|Ωt

]
≈ 1√

π

2∑

j=1

pjkf(x
k
t+1,x

n
t ), (Exogenous ZLB Model)

E
[
f(xm

t+1,x
n
t )|Ωt

]
≈ 1√

π

M∑

m=1

f(x̂m
t+1, x̂

n
t )φ(ε

m
t+1), (Endogenous ZLB Model)

wherex ≡ (v,w), pjk = Pr(st+1 = k|snt = j), andφ are the respective Gauss-Hermite
weights. The superscripts onx indicate which realizations of the state variables are
used to compute expectations. The nonlinear solver searches for ĉi(znt ) andπ̂i(z

n
t ) so

that the Euler equation errors are less than1−4 on each node.

3. Definemaxdisti ≡ max{|ĉi − ĉi−1|, |π̂i − π̂i−1|}. Repeat the steps initem 2until one of the
following conditions is satisfied.

• If for all n,maxdisti < 1−13 for 10 consecutive iterations, then the algorithm converged
to a bounded MSV solution. Since the state is composed of onlyexogenous variables,
the solution is bounded so long as the decisions rules are positive and finite.

• Otherwise, we say the algorithm is non-convergent for one ofthe following reasons:

– i = I = 500,000 (Algorithm times out)

– For alln and anyi, π̂i < .5, or for anyn, ĉi < 0 (Approximating functions drift)

– Definediri = maxdisti −maxdisti−1. For alln, diri ≥ 0 anddiri − diri−1 ≥ 0
for 100 consecutive iterations (Algorithm diverges)

To provide evidence that each MSV solution is locally unique, we randomly perturb the con-
verged decision rules and check that the algorithm converges back to the same solution.
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