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ABSTRACT

Policy function iteration methods for solving and analggiiiynamic stochastic general
equilibrium models are powerful from a theoretical and catafional perspective. Despite
obvious theoretical appeal, significant startup costs artlance on grid-based methods have
limited the use of policy function iteration as a solutiog@ithm. We reduce these costs
by providing a user-friendly suite of MATLAB functions theitroduce multi-core processing
and Fortran via MATLAB's executable function. Within theask of policy function iteration
methods, we advocate using time iteration with linear pa&ation. We examine a canonical
real business cycle model and a new Keynesian model thafrésategime switching in pol-
icy parameters, Epstein-Zin preferences, and monetaigypiblat occasionally hits the zero-
lower bound on the nominal interest rate to highlight theaattiveness of our methodology.
We compare our advocated approach to other familiar iteradind approximation methods,
highlighting the tradeoffs between accuracy, speed anastobss.
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1 INTRODUCTION

The Great Recession, the prospect of exponentially rismgignment debt, interest rates at the
zero lower bound, and potential sudden changes to monetdryszal policy make clear that non-

linearities are a crucial element to contemporary macno@euic analysis. Successfully modeling
these scenarios requires large and persistent deviatmmglie non-stochastic equilibrium. Linear
approximations around a deterministic steady state paaytyure these equilibrium properties. A
nonlinear analysis is needed.

Policy function iteration methods for solving and analggolynamic stochastic general equi-
librium models are powerful from a theoretical and compatsdl perspective. Despite obvious
theoretical appeal, significant startup costs and a radiamcgrid-based methods have limited the
use of policy function iteration as solution algorithm. Véeluce these costs by providing a user-
friendly suite of MATLAB functions. Within the class of paly function iteration methods, we
advocate using time iteration with linear interpolatioimce it provides a flexible and accurate
way to solve dynamic stochastic general equilibrium moudgtls substantial nonlinearity.

We demonstrate the usefulness of our approach by examienmegad topical examples. We be-
gin with a simple real business cycle model and a standardidginesian model. These canonical
models are useful starting points because their solutindgeoperties are well known. They also
provide useful benchmarks for speed and accur@egtion Jprovides step-by-step instructions for
how to solve these models using our advocated approach inLMBT We introduce multi-core
processing using the Parallel Computing Toolbox (PCT) amegrate Fortran through MATLAB
executable functions (MEX). Using a 6-core processor (3HMZ each) and MEX, our suite re-
duces computational time by a factor of 12 in the RBC model lana factor of 24 in the NK
model relative to non-parallelized code that does not us&XMftiditional stochastic components
further increase the speeds gains associated with MEX aiadlgdezation. Section 4analyzes the
tradeoffs between accuracy and speed using alternatretitte and approximation methods.

We demonstrate the flexibility of our advocated approachgiie canonical New Keynesian
model. Section 5adds Epstein-Zin preferences to show that our suite canduktosstudy asset
pricing facts.Section @Gntroduces regime switching in monetary and fiscal poliaypseters with
an emphasis on understanding the expectational effecesa@ed by regime switche&ection 7
adds a zero lower bound on the nominal interest rate set bsndmetary authority, which intro-
duces a kink in the policy functions. We provide MATLAB codémextensive documentation for
each exampleRichter and Throckmortof2012 provide additional supporting code.

The primary benefit of our advocated approach over pertimanethods Gaspar and Judd
(1997); Judd and Gui{1993 1997); Schmitt-Grohe and Urib€é004)] is its ability to easily ac-
count for sudden policy changes and other inherent nonitresa(i.e., zero interest rate bound,
default, irreversible investmergtc). The flexibility and simplicity of the algorithm has led e-r
cent segment of the literature to use this approach to eiimanetary and fiscal policy regimes,
quantify expectational effects of policy changes, andyskay counterfactual policiesThe suite
of programs described in this paper can be easily adaptedndiérmodels with: [i] endogenous
regime change, [ii] temporarily nonstationary proces§ékpinding collateral constraints, [iv]
stochastic volatility, [v] news shocks, and [vi] heterogeus agents. Although this method is grid-
based, our suite of programs can solve models with statesplaat contain more than one million

1SeeBasu and Bundick2012; Bi (2012; Bi et al. (2013; Chung et al(2007); Davig and Leepef2006 2008);
Davig et al.(2010 2011); Gavin et al(2013; Kumhof and Rancier010; Mertens and Rav(2013; Richter(2012.
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nodes and multiple stochastic processes in roughly onedroarstandard 6-core computer.

We remind readers that policy function iteration methogsanumerical byproduct of using
monotone operators to prove existence and uniqueness itibegyColeman (991)]. This pro-
vides an additional benefit to using policy function itesatmethods, as powerful approximation
results and proofs of existence and uniqueness can be eaddlogonjunction with the numerical
algorithm. We briefly review the theory of monotone operaiaran online appendix.

2 PrACTICAL GUIDE

All of the routines required to implement the algorithm anetten in MATLAB or compiled as
MEX (Fortran 90) functions. This code and the code used teesthle models below are publicly
available atht t p: / / www. aubur n. edu/ ~aw 0007/ . The algorithm is broken down into a
sequence of easily implementable steps that are executiedhsifollowing set of functions:

e scri pt. m- Main script that establishes all user-specified inputa structureO, and
executes all functions. It contains a parallel for-loop thiatributes the optimization routine
at each point (node) in the discretized state space acrbkscally available processors,
which considerably improves computation time. Optimiaais performed with Chris Sims’
csol ve. mby finding updated policy functions that satisfy the equililn conditions of the
model until a user-specified convergence criterion is met.

e par amet er s. m- Outputs a structure?, containing the baseline calibration of the model.

e st eadyst at e. m- Outputs a structuré, with inputP, containing the deterministic steady
state and implied parameters of the model.

e grids. m- Outputs a structurei, with inputsO and P, containing the discretized state
space. The structu@contains the number of grid points and bounds of each staitle.

e guess. m- Outputs an initial conjecture for each policy functionlwimputsO, P, S, andG
The structureO specifies whether the initial conjectures for the policydiions are drawn
from the log-linear solution to the model or the most recesriaition, which allows the user
to resume the algorithm if it is interrupted prior to convamge.

e vari abl es. m- Outputs a structure/, containing an index of variables, forecast errors,
and shocks and the corresponding variable descriptions.

e | i nnodel . m- Outputs the linear transition matriX, the impact matrix of the stochastic
realizationsM and a 2-element vector of flagsy, indicating existence and uniqueness of
the linear solution. The linear model is solved using ChimssSgensys. malgorithm and
requiresP, S, andV as inputs.gensys. mis user written MATLAB code that is designed
to solve stochastic linear rational expectations moddte Key to using this code is to map
the model into the form

ToXep1 = T1 Xy + Ve + 1ngq,

whereX is a vector of variables (exogenous and endogeneus) vector of shocks, ang
is a vector of forecast errors whose elements satisfy

xr
MNi41 = Te41 — Eiri
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for somer € X. Assuming the shocks are normally distributed and mean geEnosys
outputs the coefficientd; and M, of the following equation:

Xt+1 = TXt + M€t+1.

e egqm m- Outputs a matrixR, containing the residuals to a subsystem of expectatiaya-e
tions the are constrained by the remaining equations ingugilerium system. This function
requires as inputs the structuf@sS andG, a vector of initial conjectures, the state at each
node, and the current policy functions (required for intdaion/extrapolation).

e al | t er px. m- Performs linear interpolation and extrapolation. MATLABd Fortran rou-
tines Fal | t er px. f 90) are provided. The naming convention uses a sequence @ thre
integers representing the number of state variables,yploirctions, and continuous stochas-
tic variables. These functions can evaluate multiple ibtt, in the interest of speed, are
not generalized and may require straightforward modificetifor alternative combinations
of states, policies, and stochastic varialsles.

e pf. mat - Data array containing the current policy functions andallictures.

2.1 NUMERICAL ALGORITHM This section outlines how to implement policy function &gon
with time iteration and linear interpolation. There are anber of model-specific initializations:
model parameters, steady state values, and grid paranfetgrsthe number of points in each
dimension and the distance between them) specified by tlgggoroner. Through trial and error,
we found that the initializations are best performed in tikiving order.

First, set the baseline calibration of the modebpiar anet er s. m In addition, specify a
convergence criterion for the policy functions, which afethe accuracy and speed of the solution.

Second, calculate (using a nonlinear solver, if necesslagydeterministic steady state and any
implied parameters ist eadyst at e. m Steady state values are required for solving the linear
model and are helpful for setting up the discretized staaeep

Third, specify the number of points and the bounds for eadth gvhich are contained in
structureO and specified irscri pt . m The built-in MATLAB function| i nspace establishes
a grid for each state variable gri ds. m The built-in MATLAB functionndgr i d creates an
array for each state variable where every position reptesaimique permutation of the discretized
state variables. The total number of elements in each asrteiproduct of the number of points
assigned to each state variable and represents the nummbaiies in the discretized state space.

Fourth, establish an optimal set of variables as numerialidips. The set of possible policy
functions is not unique, but as a rule of thumb, establisicpdlinctions over the minimum set
of variables required to solve for all timevariables given the state of the economy. If possible,
reduce the number of policy variables to the number of eqoativith expectations operators.

Finally, obtain initial conjectures (guesses) for eachigydiunction. Some models are sensi-
tive to the guess, but, in general, a linear solution pravigeufficient approximatioh.We use

2Richter and Throckmorto(2012 provide the Fortran and MATLAB source code, as well as themited 32-
and 64-bit MEX functions, for each of the examples discusseide paper.

3This is not true for all models. For example, if the model @ms discrete variables, such as state dependent
parameters, then the conditional linear solution may poapiproximate the global solution. In this case, one can
obtain a linear solution for each realization of the parar(g}. A linear combination of those solutions typically
provides a good initial conjecture for the state-dependentinear model.
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Sims’ (2002 gensys. malgorithm? Enter the log- or level-linear system inkd nnodel . m
guess. mcallsl i nnodel . mto solve the linear model and generate initial conjectures.

After obtaining initial conjectures for each of the poliaynictions, set up the equilibrium sys-
tem ineqm m Using the original policy function guesses or the solufi@mm the previous itera-
tion, solve for all timef variables using all of the equilibrium conditions, excepige that contain
expectations and require numerical integration. Nexiwate updated (timeé + 1) values for
each of the policy variables using linear interpolatiotvapolation? We provide two computa-
tional routines for this step—one written in MATLAR( | t er p*. m) and one written in Fortran
90 (Fal | t er p*. mex*) but called as a MATLAB executable (MEX) function. The Farircode
is much faster, but for those who are unfamiliar with MEX, MATLAB function is sufficient
for relatively small models—those with no more than foutestzariables and only one stochastic
component. Further details about these routines are given online appendix.

After computing the updated values of each policy variasdye for the remaining time+ 1
variables needed to calculate timexpectations by applying numerical integration using tapé-
zoid rule or Gauss-Hermite quadrature. Additional detgilsut these integration methods are pro-
vided in an online appendix. Finally, using Chris Sims’ rbotler,csol ve. m solve for the zeros
of the equations with embedded expectations, subject to @abe remaining equilibrium condi-
tions. The output of sol ve. mon each node are policy values that satisfy the equilibriystesn
of equations to a specified tolerance level. This set of watharacterizes the updated policy func-
tions for the next iteration. If the distance between thesguand the updated policy values is less
than the convergence criterion on all nodes, then the jgslicave converged to their equilibrium
values. Otherwise, use the updated policy functions asdteguess until convergence.

3 EXAMPLES

We first consider two conventional models—the real busingsie (RBC) model and the new Key-
nesian (NK) model with textbook treatments providedwgCandles$2008 andWalsh(2010.

3.1 RBC MoDEL The representative household chooses sequefiges;, n, }°,, that maxi-

mize expected lifetime utilityEy >°7° 8:{c; 7 /(1 — o) — xn, " /(1 + 1)}, where is the subjec-
tive discount factor] /o is the intertemporal elasticity of substitutioh),n is the Frisch elasticity
of labor supply¢ is consumption, and is labor hours. These choices are constrained by

Cct + kt = Wy + Tfkt_l + (1 - 5)kt—1
]{ft — (1 - 5)kt—1 + it,

wherew is the real wager” is the real rental price of capitak; is the capital stock, and is
investment. The household’s optimality conditions imply

1= BE{(c;/cerr)(rf +1—-6)} and w, = yn/cy.
Output is produced according 1o = 2k~ ,n; ~“, where0 < a < 1. Productivity follows

2= (1= p)Z+ pzi1 + ¢y,

40ther methods include Uhlig’d4097) toolkit and Klein’s 000 algorithm.
SAlternatively, Chebyshev polynomials or cubic splineslddae used for interpolation/extrapolation. We advocate
for linear interpolation since it is faster and more stabld,we consider alternative methodssiection 4
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where?z is the average productivity level, aad ~ i.i.d. N(0,0?). A perfectly competitive firm
chooseq k;, n;} to maximizey, — w;n; — r¥k,_,. The firm’s optimality conditions imply

7*1];: — ayt/kt—l and Wy = (1 - O[)yt/nt-

The aggregate resource constraint is givem;by i; = y;. A competitive equilibrium is given by
the household’s and firm’s optimality conditions, the praiitan function, the law of motion for
capital, the aggregate resource constraint, and the pligityprocess>

3.1.1 LVING THE MODEL The following are detailed instructions on how to setup aoldes
the nonlinear model with time iteration and linear integin.

e There are five structural parameters. Using a quarterlpedion, these parameters are set
to 8 = 0.99 (4% real interest ratey, = 0.025, « = 0.33, 0 = 1, andn = 1. The productivity
process is persistent wigh= 0.95 andz = 1. Productivity shocks are normally distributed
with mean zero and standard deviation= 0.0025. The convergence criterion 191°,

¢ Given the steady state labor shater 0.33, the deterministic steady state has a straightfor-
ward analytical solution.

e There are two continuous state variablgs; andz;, and one continuous stochastic variable,
£441, that are discretized. The bounds of the state space andithkean of points for each
state variable are contained in the struct@rand inputs ofgri ds. m The capital and
productivity grids are evenly spaced with bounds that arersgnt from their steady state
values. These bounds minimize extrapolation and ensutdltbanodel simulates on the
discretized state space. With only two state variables,ameaéford dense grids. We specify
41 points for each state variablg, (; and z;), which implies 1,681 nodes. No specific
number of grid points is required for any of the continuowsestvariables (minimum 3
points), but using more grid points on state variables tbatrdoute to the curvature of the
policy functions improves accuracy. However, there isaié balance between increasing
the number of grid points and keeping the problem numeyit¢edctable.

e We enter the log-linear equilibrium system (8 equation$) in nnodel . mto produce
initial conjectures to the nonlinear model.

e \We choose,; as a policy since it allows us to conveniently calculate imet variables, but
this choice is not unique. Givefk; 1, z;, n,}, it is easy to calculatg, from the production
function,i, from the aggregate resource constraipntrom the law of motion for capital, and
¢; by combining the firm’s and household’s optimality condisdfor labor. To obtaim,,
interpolate/extrapolate for all realizationsf ;. Given{k;, z,11,n:41}, calculatec,,; and
¥, (from the firm's optimality condition), which enter expetitms. We use Gauss Hermite
guadrature to integrate acrass;. csol ve. msearches for labor policy values that satisfy
the equilibrium system irqgm mby finding the zero of the consumption Euler equation.

e After entering the equilibrium system agqm m executescr i pt . mto run the algorithm.
To take advantage of the speed gains associated with thikeptralbox, execute the com-
mandmat | abpool , which pools all locally available processors.



All MATLAB (No MEX) Interpolation using MEX

Processors Structures No Structures Structures No Stesctu
1 129 (1.0) 100 (1.3) 90.5(1.4) 62.9 (2.1)
2 65.6 (2.0) 52.4 (2.5) 47.1(2.7) 34.2 (3.8)
6 27.5(4.7) 23 (5.6) 20.7 (6.2) 16.6 (7.8)

Table 1: RBC model solution times—MEX, parallelizatiomustures comparison (in seconds). Based on a state space
of 1,681 nodes (41 points dn_1, 41 points orz;). We specify 10 realizations af ;. The routines were computed
with an Intel Xeon X5690 6-core processor (3.47GHz) opegaid-bit Windows 7. The values in parentheses are the
speed gains relative to the slowest setup.

3.1.2 SLuTioN TIMES The major drawback with time iteration is its reliance on alimeear
solver that executes on each node, which is computatioegfignsive. The introduction of multi-
core processing and Fortran via MEX reduces this compunaltisurden (setable 1). Multi-core
processing in MATLAB is easily facilitated with the PCT, whicreates a “worker pool” consisting
of locally available processors. Without the PCT, MATLABIpnses one processor even though
additional processors are available in most computersidrcase, computational resources are not
maximized and each node in the discretized state spacelisag@ sequentially. The PCT allows
MATLAB to evaluate multiple nodes simultaneously, whicloguces near linear speed gains.

The interpolation/extrapolation step imposes the mostisagnt slowdown. Our algorithm
achieves further speed gains by using a Fortran 90 MEX fandtiat is called in MATLAB. For
relatively small models (two or fewer state variables)| fimplementation using only MATLAB
routines is relatively inexpensive. For larger modelshsas the NK model, the benefits of MEX
clearly outweigh the costs. The two pitfalls of programmingd-ortran are the need for a MEX
gateway function and the noninteractive nature of the editoe MEX gateway function initializes
the function’s inputs and outputs and calls other subrestihat perform the actual task. There
is a fixed cost in understanding how to initialize variousdiimns with MATLAB’s application
programming interface, allocate memory, and create nestaad arrays that properly interact with
MATLAB. An additional cost is the inconvenience of debuggirMATLAB'’s editor is proactive
in addressing problem areas in scripts; Fortran is obwonet since it is a compiled language.
Even if a Fortran function successfully compiles via MEXrthstill may be problems in the code
that require further attention. Our Fortran functions aréten using the free-format, which is
relatively easy to learn since it is very similar to MATLABr#yax.” Once the Fortran function is
compiled using MEX (which requires Intel Visual Fortranjje@w MEX function is created, which
is called in MATLAB in the exact same way as MATLAB's built-fanctions.

MATLAB structures are a convenient way to group data—suclpasameters, steady state
values, grids, and model-specific options—and reduce thebeu of inputs when calling func-
tions. The drawback is that MATLAB requires more time to ascealues contained in structures.
Thus, we often forfeit convenience and simplicity in favdifaster code by removing the values

5We also provide code to solve the canonical RBC model withelmonventional frictions—capital adjustment
costs, variable utilization rates, and external habitipsce.

"By default, MEX only interprets fixed-format (f77) Fortrande. Since our fortran code is written in the free-
format (f90), MATLAB batch files need to be modified. Navigébethe mexopts folder in the MATLAB directory
(e.g., ...\MATLAB\R2010a\bin\win64\mexopts), and opé tatch file corresponding to the installed version of
Intel Visual Fortran (IVF) in a text editor. Delete the ‘/fikeflag and save the batch file. Then usex - set up to
select IVF as the compiler in MATLAB. MATLAB must be restadtanytime the batch file is changed.
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contained in the structures before fher f or loop.

Table 1reports (in seconds) how the solution times differ acrosstiinee modifications dis-
cussed above—multi-core processing, interpolatiorégxiation via MEX, and MATLAB struc-
tures. Using two processors instead of only one (which idgéfault) reduces the solution time
by nearly 50 percent regardless of the choice to use MEX aoctstres. Using MEX also cuts the
solution time in half, which is independent of the number aigessors or the use of structures.
In both cases, adopting structures simplifies the code,tbotposes a fixed cost of roughly 30
seconds, which decreases with the number of processors.

The values in parentheses are the speed gains relative stothest setup. Notice that it does
not increase one-for-one with the number of processors¢iwisi indicative of communication
overhead. Additional processors still provide evidenespgains, but this benefit is limited if the
code is not optimized for speed. For example, code that gragi& processors without MEX while
retaining structures yields nearly the same speed gaindesthat employs just two processors, but
uses MEX and removes the structures. Overall, using sixgssmrs with optimized code (MEX
and no structures) reduces the solution time by a factor afiyn8.

3.2 New KEYNESIAN MODEL The representative household choo$esn;, M, k. }°, to
maximize expected lifetime utility,

x l—0o 14+n M. /P, 1-k
EOZBt{Ct Xnt +V< t/ t) }7 X7V>O
t=0

l—0 1+n 1—k

whereP, is the aggregate price indek/, is nominal money balances, ahdk is the interest (semi)
elasticity of money demand. The household’s choices arstained by

Ct -+ my + ’it + bt = (1 — Tt)(wtnt + Tfkt_l) -+ (mt_l + Tt—lbt—l)/ﬂ-t -+ dt,
ke = (1 —0)ki—1 + iy,

where lower case letters denote real quantities<{ X,/P,), =, = P,/ P,_; is the gross inflation
rate,b, is the stock of real government bondsis a proportional tax rate levied against capital and
labor earnings, and; is the share of real firm profits. Optimality implies

xnic] = (1 — 7wy,
vm, " = (1=1/r)c.”,
1= priEf{(ce/cern)’ /me },
1 =pE, {(Ct/ct+1)0 ((1 - Tt+1)7’f+1 +1 - 5>} :

The production sector consists of monopolistically corntpetintermediate goods producing
firms who produce a continuum of differentiated inputs anepaesentative final goods producing
firm. Each firmi € [0, 1] in the intermediate goods sector produces a differentigoedi, v, (i),
with identical technologies given by (i) = k,_1(i)%n,(i)*=*), wherek(i) andn(i) are the levels
of capital and employment used by firim Each intermediate firm chooses capital and labor to
minimize its operating costs;k; (i) + wyn,(i), subject to its production function.

Using aDixit and Stiglitz(1977) aggregator, the representative final goods producer psesh
y:(i) units from each intermediate firm to produce the final gapds= [ [, v:(i)®~1/%di)?/ ¢,
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wheref > 1 measures the elasticity of substitution between the irédrate goods. Maximizing
profits for a given level of output ylelds the demand functfon intermediate inputs given by
v (i) = (pe(i)/ P,) "%, whereP, = f pi(1)1=%di]*/1=9 is the price of the final good. Following
Rotemberg1982), each firm faces a cost to adjustlng its price, which empzieasihe potentially
negative effect that price changes can have on customerdiatonships. Using the functional
form in Ireland(1997), real profits of firm; are

pe(7) 1_6_\1] pe(7) _0_ ¥ pe(9) _1 ’
( b ) t( b ) §<7_Tpt—1(i) ) o
wherep > 0 determines the magnitude of the adjustment cégt real marginal costs, andis
the steady state gross inflation rate. Each intermediatdgypmducing firm chooses their price
level, p,(7), to maximize the expected discounted present value of r@tpE; > -, g: ,dx(7),
whereq; = 1, i1 = B(c/c41)?, andqy, = Hf:m ¢;—1,; 1s the stochastic discount factor

between periodsandk > t. In a symmetric equilibrium, all intermediate goods pradgdirms
make the same decisions and the optimality condition besome

@(E—l) =(1—-0)+ 0V, + ¢E, |:C_Itt+1< an —1> @%]
T T ™ Yt

dt(i) =

In the absence of costly price adjustments (ize= 0), the real marginal cost of producing a unit
of output equalgéd — 1)/6, which is the inverse of the firm’s markup of price over maagicost.

The fiscal authority finances a constant level of discretipependingg, through proportional
taxes on capital and labor, seigniorage revenues, and bygssne-period nominal government
debt. The government’s flow budget constraint is given by

my + by + T (winy + Tfk‘t—l) =g+ (me—1 +ri—1bi—1) /7.
Following Leeper(1991), the monetary and fiscal authorities set policy according t
ry = 7(m/7*)?  and 7, = 7(b_1/b*)7 exp(ery),

wherer* andb* are the target levels of debt and inflatighand~ are parameters controlling the
policy responses to inflation and debt, and ~ i.i.d. N (0, o2).

The aggregate resource constraint is givemby i; + g = [1 — ¢(m/7 — 1)?/2]y;. Equilib-
rium is characterized by the household’s and firm’s optitpalbnditions, the government’s budget
constraint, the monetary and fiscal policy rules, and theeggde resource constraint.

3.2.1 DLVING THE MODEL The following instructions provide a complete descriptiorhow
to solve the nonlinear model with time iteration and linederpolation.

e There are seven structural parameters. Given an annubfat&din, these parameters are
settof = 0.9615 (4% real interestrate)y = 1,7 = 1,k = 1, 0 = 7.66 (15% price
markup),é = 0.1, ande = 10. The monetary policy parametes, = 1.5, and the fiscal
policy parametery = 0.15, which guarantees a unique and bounded solution. Fiscalypol
shocks are normally distributed with mean zero and standiewthtiono, = 0.001.



Processors No MEX Interpolation using MEX Equilibrium gystin MEX

1 144.8 (1.0) 59.5 (2.4) 22.6 (6.4)
2 75.6 (1.9) 31.8 (4.6) 13.0 (11.1)
6 28.0 (5.2) 13.2 (11.0) 6.1(23.7)

Table 2: NK model solution times—MEX and parallelizatiomguarison (in seconds). Based on a state space of 2,401
nodes (7 points on each continuous state variable). Wefgddxiealizations of .. The routines were computed with

an Intel Xeon X5690 6-core processor (3.47GHz) operatingié®windows 7. The values in parentheses are the speed
gains relative to the slowest setup.

e The preference parameterandy are pinned down by the steady state labor shiare0.33,
and the velocity of money; = 3.8. Given the steady state tax rate= 0.21, and the share
of government spending to output/y = 0.17, the remaining steady state values have a
closed-form solution.

e The set of state variables for the linearized modsl,, r,_;, b;_;, andk,_,, can be reduced
to a4, b;_1, andk;_; in the nonlinear model, wherg = m;_; + r;_1b;_; is real government
liabilities. However, it is necessary to include the fiscaligy shock,s.,, in the state to
solve for the time tax rate. Thus, the minimum state in the nonlinear model istssf
{at, b1, k1, 57—,t}-

e The NK model allows less flexibility for choosing policy fuians. The presence of Rotem-
berg adjustment costs imply that inflation is a requiredgyoto analytically solve for all
time ¢ variables. We specify labor as a policy function to pin dowitpoit. Additionally, we
choose capital as a policy to minimize the number of compurtat Given these policies and
the state, all time variables fall out naturally from the equilibrium conditis.

e We specify seven points on each continuous state variabliehvimplies 2,401 nodes. The
number of grid points is subjective, but the more dense titt the greater the accuracy
of the solution. In models this size, we recommend first sg\the model with relatively
sparse grids and gradually increasing the density of thisgrntil there is no noticeable
change in the policy functions. One way to do this is to usestitetion with a sparse grid to
interpolate the policy functions on a denser grid.

3.2.2 LUTION TIMES Relative to the RBC model presentedsection 3.1the NK model
contains two features that increase computational timest,Rhere are two additional state vari-
ables. With seven grid points on each continuous stateblarithis increases the number of nodes
in the discretized state space by about 40 percent. Seduerd, are two additional policy func-
tions, which double the amount of interpolation/extragiola

Table 2reports speed test results across the number of processbthe amount of com-
putations performed with MEX/Fortan. Once again, intradganulti-core processing produces
near-linear speed gains regardless of the involvement of M report three different levels of
MEX involvement: 1. none of the computations are performgdgiMEX, 2. only the interpola-
tion/extrapolation step is written in Fortran and callethgdMEX, and 3. the entiregmfunction
is written in Fortran and called bysol ve. mas a MEX function. Programming the entire equi-
librium system in Fortran significantly reduces computaaictime. With six cores, using MEX
for the interpolation/extrapolation step cuts the compoal time in half, but when the entire



Acronym FM FC TL TC

Iteration Method Fixed-Point Fixed-Point Time Time
Approx. Method Monomial Basis Chebyshev Basis Linear mter Chebyshev Interp.

Table 3: Alternative iteration and approximation methods.

equilibrium system is written entirely in Fortran the algiom is additional 2.5 times faster. The
biggest drawback with programming the entire equilibriystem in Fortran and compiling it with
MEX is that it is tedious to debug and requires a model-speEirtran function. The interpola-
tion/extrapolation MEX functions, on the other hand, aneagal and can be used to solve different
models. For users who are less familiar with Fortran, thetechal start-ups costs may outweigh
the significant speed advantage of using additional amaimHEX.

In total, multi-core processing and MEX reduces computetidime from 144 to only 6
seconds—a speed factor of nearly 24 in the NK model. When wpie the equilibrium sys-
tem to the RBC model in MEX, computational time falls to 10@&tt, a speed factor of 12 over
the slowest setup. The reason for the significant improvémealative speed gains over the RBC
model is due to thé or -loop in the interpolation/extrapolation step over two iiddal policies
and thef or -loop required by the non-linear solveisol ve. m® Thus, these speed factors would
be even larger with additional state variables or contiistgiachastic variables.

Coding the entire time iteration/linear interpolation@ighm in Fortran and compiling it as a
MEX function achieves further speed gains. With the exactesaetup the model solves in about
0.5 seconds, which is fast enough to estimate nonlinear Inodid a particle filter. However, this
approach imposes additional startup costs. First, it reguhe user to learn how to call IMSL
libraries, since few functions are intrinsic to Fortran.c&ed, the user would have to parallelize
the code using either the Fortran MPI or OpenMP instead oP@&. Fortunately, OpenMP is
straightforward to implement, since it does not requirdiekpnemory management like the MPI,
but it cannot parallelize code across networked computé&hstd, it requires the user to either
programcsol ve in Fortran or use a built-in solver in the IMSL package sucmsqgnf . Given
these costs and the challenges of debugging the code, weegahagramming the entire algorithm
in Fortran only in cases where maximum speed gains are ezfjuRegardless of the amount of
computations we execute with MEX functions, we always uselM®B as our interface, since it
has a convenient GUI and it is easy to store data in strugtiresimulations, and plot results.

4 COMPARISON WITHALTERNATIVE SOLUTION TECHNIQUES

This section considers alternative solution techniques fit§t solve the model using a log-linear
approximation around its deterministic steady state. Te$hod is very attractive because first-
order Taylor approximations are straightforward to oht#ie solution to the equilibrium system
is quick to compute, existence and uniqueness conditiansvall established, and large models
(in terms of the number of shocks and states) do not incréaseoimputational burden. However,
these benefits can come at a steep cost—inaccuracy outsidelase neighborhood around the
deterministic steady state and an inability to solve moudis inherent nonlinearities.

8Solution times are not directly comparable across modetsuse the speed of convergence may differ. For
example, the NK model is larger in terms of the number of pdlicctions and the size of the state space, but the
solution time is similar to the RBC model since the RBC modkést four times as many iterations to converge.
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Within the class of policy function iteration methods, wergmare time iteration (our advocated
approach) with fixed-point iteratiordidd (1998]. The downside of time iteration is that it is
costly to call a nonlinear solver on every node. Thus, thetsmi times can be slow relative
to fixed-point iteration. Fixed-point iteration evaluates policy functions at current and future
values of the state to back out the policy function updatemfthe Euler equations. In sharp
contrast, time iteration only evaluates the policy funesiat future values of the state and requires
a nonlinear solver to solve for the policy functions at cotnealues of the state. Moreover, fixed-
point iteration does not guarantee that the equilibriumiesyisof equations is satisfied on each
iteration to a specified tolerance level, making it potdlytiass stable than time iteration.

We also consider alternative approximation methods. Limtarpolation locally approximates
the policy functions at each node in the state space. As amative to this local approximation
method, we adopt projection methods, which build globarapinations of the policy functions,
but still rely on grid-based iterative techniqudsifid(1992 1998]. Projection methods postulate
that the policies can be written as a function of a user-$pedbasis. We consider monomial and
Chebyshev bases, whose coefficients are updated by mingrtizé sum of squared residuals.

The accuracy of global solution methods depends on the etafi@ basis function. Given
a chosen basis, each iteration implies new least squariesaéss of the coefficients that glob-
ally approximate the policy function. As alternatives ta edvocated approach (TL), we apply
fixed-point iteration with a monomial (FM) and Chebyshevymamial (FC) basis and time iter-
ation with Chebyshev interpolation (TC). Henceforth, wstidiguish between methods using an
acronym where the first letter is the iteration techniquendtior fixed) and the second letter is
the approximation method (linear interpolation, Chebygt@ynomial basis/interpolation, mono-
mial basis). Se&able 3for details. Solving for the policy functions requires adhting the value
of these functions off the nodes (i.e., interpolation bemveodes and extrapolation outside the
grid), which is inaccurate when there is curvature in thagydlunctions and the grids on the
state variables are sparse. Thus, orthogonal bases, sutinedyshev polynomials, often yield
more accurate solutions, but at a greater computationglwbgh is increasing in the order of the
polynomial used to approximate the policy functions.

4.1 LEAST SQUARESPROJECTION The following algorithm implements the least squares pro-
jection method, given a specified basis. The basis is ewalusta particular state and forms the
dependent variables used to obtain the least squares esfimaetX denote the basis evaluated
using the original discretized state space andhe basis evaluated at the timmstate.

We obtain an approximation of the policy functiors, (an M-by-p matrix wherel/ is the
number of nodes anglthe number of policy functions), using the least-squarémeses,);.> We
useA, to calculate the updated state variables, which fojifnsf\m is a function ofX, and is used
to calculate the + 1 variables necessary to evaluate the terms within the eafi@ctoperators.
The expectations are evaluated using Gauss-Hermite dqueglra

Once the expectations are evaluated, we calculatas implied by the equilibrium system
of equations. Given\;, new estimates of the coefficients are obtained using tret kspuares
estimator,n,. The algorithm iterates on these estimates. Since thisadatiinimizes the sum
of the squared residuals, the approximation error of theep&linctions is minimized for a given
basis. The least-squares estimates of the coefficientspaie@ed using a convex combination of

9We obtain the initial least-squares estimates from thdilogar solution.
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the old and new estimates,.; = Ay + (1 — A\)7; for A € [0, 1], which helps maintain stability,
especially at the beginning of the algorithm. This iterafiwvocess continues until, — 7| reaches
a pre-specified tolerance criterion.

4.1.1 MoNOMIAL BAsis Following Heer and Maussné€R005, we choose the set of mono-
mials corresponding to as” order Taylor approximation of the policy function. The s&basis
functions is given by

Pi - {()

wheres is the number of state variables. The monomials are evalwdteach of thé/ nodes in
the discretized state-space and stored column-wiseé.ifThe approximated policy functions are
given by A, = X7,. New estimates of the coefficients are obtained every i@ratsing the least
squares estimatof, = (X'X) 1 X'A,.

Zki:j7ki207j:0717"'7p}7

1=1

4.1.2 (HEBYSHEV POLYNOMIAL BAsSIS As an alternative to the monomial basis, we ap-
proximate the policy functions using a Chebyshev polyndigsis. The first two Chebyshev
polynomials are€l(z) = 1 and7i(x) = z. The remaining polynomials are given by the re-
cursive formulation?;(z) = 227;_1(z) — Tj_o(x), for j > 2. We use the MATLAB function
ChebyshevCoef f . m written by David Terr, to obtain the coefficients for eaclypomial. The
MATLAB function chebpol y. moutputs these coefficients and the corresponding powers of
which allows us to construct the polynomials with elemeydebement matrix operations.

chebpol y. malso outputs the corresponding zeros of the Chebyshev pliats. Discretiz-
ing the state-space so the nodes coincide with the zerog @iadlynomials minimizes the error of
the approximating function. The zeros of the Chebyshevrmtyials are given by

) (Qki—l )
Ty, = COS ™,
2mi

wherek; = 1,...,m; andi = 1, ..., s. Choosen; as the number of points in thi& dimension of
the state space. Sineg, € [—1, 1], transform the grid to the interval,;, b;] by applying

Ty, (bi — a;
s o= Inlbima)
' 2
The next step is to estimate the least squares coefficietite afpproximating function.
Define Ay, . . as the value of the approximating functioh(zy,, . .., z, ). We seeky;,

.....

that minimizes

..... Js

mi ms

ni Ns
ST Mk = D> M T (@) - Ty (2,

k=1  ke=1 Jj1=0  js=0

for n; < m;. This yields the least-squares estimator

mi ms

) 1410, >0)  141(js>0 . i ,
Mt seeds = G>0) ( )Z"'ZAkl ko gy (T ) -+ - 15, (Z,)

7777 m m Ity
1 s k=1  ks=1
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and is the output of the MEX functioichebwei ght s*x. The approximating function is evalu-
ated in the MEX functiorFal | cheb* according to

Aroiz) =D D i T (@) - T (),

Jj1=0 Jjs=0

WherExi = 2(ZZ - ai)/(bz- - CI,Z') — 1.

TL —e— Log-Linear —&— FC TC

-1 -05 0 0.5 1
Capital Productivity Productivity Shock

Figure 1: RBC model consumption Euler equation errors irelddklogarithms. FM: Fixed point iteration with a
monomial basis, TL: Time iteration with linear interpotati FC: Fixed point iteration with Chebyshev polynomial
basis, TC: Time iteration with a Chebyshev interpolatio@.dnd TC are based on a 4th order Chebyshev polynomial.

4.2 BULER EQUATION ERRORS Figure 1compares errors for the consumption Euler equation
across the log-linear, TL, TC, FM and FC solution methods: dase of presentation, we show
absolute errors in base 10 logarithms. This means that iEthler equation error is-4, the
household makes an error of one consumption good for eve®@Q@inits of consumption goods.
In general, our findings are in line wikruoba et al(2006.

The log-linear method (circle markers) is the least aceurd&M (dashed line) relies on an
arbitrarily-specified basis and is the least computatigmalensive global approximation method.
To capture nonlinearities in the policy functions, we wtite approximating functions @s= X,
whereA = ¢; is the sole policy functionX = [1 k z kz k* 2] is a collection of basis functions, and
nis a6 x 1 matrix of coefficients. We considered several alternatoteections of basis functions
with higher-order terms, but found that they had little effen the magnitude of the errors. We
find that FM is as much as two orders of magnitude more acctiratethe log-linear method.

Like the log-linear method, TL (solid line) solves fotacal approximation of the policy func-
tions. Thus, the errors can meet any user-specified toleranterion on each node, but lose
accuracy when policy function values are interpolated betwnodes or extrapolated outside the
state space. The key difference from the log-linear methadklat TL outperforms FM off the grid
for the productivity shock, improving the accuracy of thesomption Euler equation by as much
as two orders of magnitude. FC and TC are even more accueatd th Regardless of the iteration
technique, using Chebyshev polynomials to approximateatiey functions consistently satisfies
the consumption Euler equation given any user-specifiedante level—both on and off the grid.
However, this result is sensitive to the order of the polyrmmThe errors with TC and FC are
based on a 4th-order Chebyshev polynomial. We found thagdonder polynomials significantly
reduce accuracy, but higher order polynomials only matityimaprove accuracy.
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The NK model contains five state variables—lagged real debt,money balances, the nomi-
nal interest rate, capital, and the fiscal policy shock—dunel& policy functions—Ilabor, inflation,
and capital. Irfigure 2 we report errors for the consumption Euler equation, tie firicing equa-
tion, and the bond Euler equation. For ease of presentatiemestrict our attention to errors as
a function of capital and the tax shotkAlthough this model is more complicated than the RBC
model, the ordering of the Euler equation errors remainsanged. Off the grid, TL consistently
performs two orders of magnitude better than log-linearhma@$. TC and FC further increases
accuracy, reducing Euler equation errors by an additiamalarders of magnitude.

- - - FM

TL =—@— Log-Linear =—#e— FC TC

Consumption Euler Consumption Euler

. —2 5 0 2 5
Capital Tax Shock

Firm Pricing Firm Pricing

Capital Tax Shock

Bond Euler Bond Euler

I

-5 —2.5 2.5 5
Capltal Tax Shock

Figure 2: NK model Euler equation errors in base 10 logarithFM: Fixed point iteration with a monomial basis,
TL: Time iteration with linear interpolation, FC: Fixed piiteration with a Chebyshev polynomial basis, TC: Time
iteration with Chebyshev interpolation. FC and TC are based 4th order Chebyshev polynomial.

0Alternative state variables do not impact the ordering ef Buler equation errors. We decided not to average
across the linear state to obtain a better comparison betthedinear and nonlinear solution techniques.
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RBC Model NK Model

Method No MEX Basis in MEX No MEX Basis in MEX
FM 0.5 N/A 0.9 N/A

FC 27.2 6.5 302.0 31.2

TL 27.3 20.6 37.8 22.5

TC 459 23.9 508.2 60.8

Table 4: RBC and NK model solution times across the alteraatblution methods (in seconds). The RBC solution
is based on a state space of 1,681 nodes (41 points_an 41 points ore;) and 10 realizations of, ;1. The NK
solution is based on a state space of 2,401 nodes (7 poinais @nb;_1, k:—1, ande ;) and 10 realizations of- ;.

FC and TC are based on a 4th order Chebyshev polynomial. Titiees were computed with an Intel Xeon X5690
6-core processor (3.47GHz) operating 64-bit Windows 7.6Adcally available processors were used in every speed
test. FM: Fixed point iteration with a monomial basis, TLME iteration with linear interpolation, FC: Fixed point
iteration with a Chebyshev polynomial basis, TC: Time iterawith Chebyshev interpolation.

4.3 SPEeD COMPARISONS Table 4reports solution times for the RBC and NK models across
the alternative solution methods. Linear methods are fastasy to apply, and there are numer-
ous toolboxes for obtaining solutions. However, these outhare less accurate and unable to
handle intrinsic nonlinearities or capture potentiallyontant expectational effects (for example,

in models with Markov-switching policy parameters or bimglconstraints.)

Figures land?2 indicate that TC and FC offer a clear increase in accuracynfash as two
orders of magnitude), buaible 4shows that greater accuracy comes at the expense of a greater
computational burden in terms of running time and impleragon. Chebyshev interpolation is
more intensive than linear interpolation, which MEX alleés. The MEX implementation of FC
is relatively quick and is four orders of magnitude more aataithan FM, but the speeds of both
FC and TC relative to TL exponentially decrease for largedet® and higher order Chebyshev
polynomials. For the RBC and NK models, fixed-point iterati®faster than time iteration. How-
ever, fixed-point iteration solution times depend on thegydunction update weight). These
simple models permit = 1, but complex models may require a loweto maintain stability of the
algorithm. Time iteration does not suffer from this instapsince the nonlinear solver minimizes
error each iteration. Our findings suggest that TL provideskiest balance between speed and
accuracy, offering a 41 percent (63 percent) speed dechieasd C in the RBC (NK) model with
a modest reduction in accuracy. TL is also more robust ttsaliernatives, since it is stable in
every macroeconomic model and calibration we have tested.

4.4 MAXIMUM RESIDUAL AND EULER EQUATION ERRORSINTEGRAL Following Aruoba
et al.(2006 andCaldara et al(2012, in tables 5we provide the integral of the Euler equation er-
rors and the maximum residual for each solution method. &k&sistics provide complementary
measures of accuracy and are defined over a square thabdipercent on either side of steady
state capital and productivity in the RBC model ah@ percent on either side of steady state cap-
ital and the tax shock in the NK model. We simulate each mooiell00,000 periods from its
stochastic steady state and create a distribution by auyitite number of realizations in evenly
spaced intervals and dividing by the simulation length.

The maximum Euler equation errors correspond to the laagests plotted irfigures 1(RBC
model) and2 (NK model). Once again, we report base 10 logarithms of threrer There are two
distinct groups. Listed from least to most accurate, thelilmgar method, FM, and TL have the
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Method Capital Productivity
FM -8.4 (-4.9) -8.7 (-5.1)
TL -8.0(-5.2) -8.8(-5.1)
Log-linear -7.2 (-3.8) -8.4 (-3.2)
FC -10.3(-8.2) -11.3 (-7.9)
TC -10.5(-8.2) -11.3(-7.9)
(a) RBC model

Capital Tax Shock
Method Capital FOC Firm Pricing Bond FOC Capital FOC Firncing Bond FOC
FM -9.5(-5.0) -8.4 (-3.9) -9.8 (-5.1) -9.4 (-5.3) -8.3(-%.5 -9.6 (-5.3)
TL -14.1 (-5.7) -14.0 (-4.8) -14.1 (-5.4) -11.1 (-7.9) -8:8.Q) -10.5(-7.3)
Log-linear -11.4 (-3.5) -10.2(-2.2) -10.7 (-3.4) -11.0.6% -9.6 (-3.7) -10.6 (-5.0)
FC -12.4 (-8.0) -11.4(-7.0) -12.4 (-8.2) -12.2 (-9.4) -1¢24) -12.3(-9.4)
TC -13.0 (-8.0) -12.1 (-7.0) -14.8 (-8.2) -12.8(-9.8) -11-8.7) -14.1 (-10.1)
(b) NK model

Table 5: Euler equation error integrals (maximums). Vaindsase 10 logarithms. FM: Fixed point iteration with a
monomial basis, TL: Time iteration with linear interpotati FC: Fixed point iteration with a Chebyshev polynomial
basis, TC: Time iteration with Chebyshev interpolation.a@ TC are based on a 4th order Chebyshev polynomial.

largest errors. FC and TC perform equally well and provideearamprovement in accuracy.

The integrals take into consideration the frequency at wthe errors occur and provide mea-
sures of the welfare loss associated with a particular isolumethod. Compared to the maximum
residual, the relative accuracy of the various methods doeshange. These integrals highlight
a smaller difference in accuracy between TL and FM along itnelated path than suggested by
the maximum error over the entire interval. However, FC a@dstill show a clear comparative
advantage in accuracy with at least a 4th order Chebyshgnpalial.

5 NEw KEYNESIAN MODEL WITH RECURSIVEPREFERENCES

This section considers a cashless version of the NK modkblatiin sectiorsection 3.2but where
households have preferences that distinguish betweeavéskion and intertemporal substitution.
This demonstrates the flexibility of the time iterationdar interpolation algorithm and shows that
our suite can be used to study asset pricing facts. Follodimyannini and Weil(1989 and
Epstein and Zir{1989 1991), we adopt a recursive structure for intertemporal uttjityen by
_ x/(1—n)

U, BT = { (0= 9= 1 g0ty @
wheren determines relative risk aversioa,is the elasticity of intertemporal substitution, and
x = (1 —mn)/[1 —o~!]. Time+ utility is given by

ug = ule,ny) = /(1 —n)™, ve(01). 2

The household’s choices are constrained by
e +ip+ by = (1 — 1) (weng + rki—1) + re1ber /7 + dy, (3
]Ct - (1 - 5)kt—1 —+ it. (4)
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Given prices, the representative household chooses arsxjaéquantities{c;, n, By, ki }°,, to
maximize () subject to 2)-(4). Optimality yields the following first order conditions

1—v ¢

1— -
( i) v 1—mn,’

1 =rEd{qii1/Tes1}s
1= Et{Qt,t—i—l[(l - Tt+1)7"f+1 + (1 - 5)]}7

where the stochastic discount fact@rjs given by

1— 1-1
=1 1-n X
- Ut+1 | X Ct Vt+1
dti+1 = B i
U Cr1 \ BV

and, at optimum, the value functiowi, can be written

x/(1-n)

Ve={(1= B! 4 BBV

Whenn = 1/0, the value function}, disappears from the first order conditions. Moreover, the
constant of relative risk aversiom,only alters the dynamics of higher order approximatiomses

to a first-order, the terrﬁl/'ti‘ln/EtI/'tﬁr_l’?)l—l/X cancels out in expectation. The firm’s problem and
the policy specification are identical $ection 3.2

The model contains four state variables—Ilagged real debtnbminal interest rate, capital,
and the fiscal policy shock—and four policy functions—Ighaflation, capital, and the time-
value of the optimal value functiorfigure 3reports errors for the consumption Euler equation,
the bond Euler equation, the firm pricing equation, and theshbold’s optimal value function.
Once again, we restrict our attention to errors as a funafaapital and the tax shock and report
them in base 10 logarithms. Our findings are in line v@dddara et al(2012).

Outside of a close neighborhood of steady state, the l@gtimethod continues to perform at
least two orders of magnitude worse than its nearest narlic@npetitor. However, the accuracy
of the FM solution technique increases relative to the caxabhNK model, performing equally as
well as the TL solution method. TC and FC remain the most ateurmproving accuracy by an
additional two orders of magnitude over FM and TL.

6 NEW KEYNESIAN MODEL WITH REGIME SWITCHING

This section adds monetary and fiscal policy switching tocreonical NK model, but where the
fiscal authority only has access to lump-sum taxes to isthatexpectational effects of switching
regimes. Unlike the previous examples, the discontinuitthe monetary and fiscal policy rule
implies that linear interpolation is more accurate that I§§lséev approximation, which cannot
accurately approximate the policy functions with a low andelynomial. The policy rules are

= f(m/w*)‘z’(st) exp(&rt)
7o = T(bi_1/b")"" exp(ery),
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wheres, € {1, 2} and the regime-dependent reaction coefficients are given by

_)o fors;=1, )y forsi=1,
9(s:) = {0 for s, = 2, V(i) = 0 fors; =2.

The policy mix evolves according to a first-order two-statarkbv chain given by

Pr[st = 1‘3t—1 = 1] Pr[St = Q‘St—l = 1] _ |P11 P12
Pr[s; = 2|s;—1 = 1] Pr[s; = 2|s;_1 = 2] Pa1 Paal|

FollowingLeeper(199]), we label state 1 as active monetary and passive fiscay@M/PF)
and state 2 as passive monetary and active fiscal policy (FM/A

6.1 SOLUTION TECHNIQUE AND EULER EQUATION ERRORS The two policy regimes imply
very different linear solutions. Thus, using the linearusioin in only one of the states does not
provide a good initial conjecture for both policy statestéad, we use a linear combination of the
linear solution in each state with weights equal to the itenmsprobabilities to form a guess for the
full nonlinear model. Although this is not required in algmne switching models, we found this is
the best approach because it approximates the expeclatitaw of switching between regimes.

We interpolate/extrapolate for every permutation of treeditized continuous stochastic vari-
ablese,, ande, ;. We facilitate this with a nested loop &l | t er p* that outputs a matrix of all
possible realizations of the policy variables at titne 1, where the rows correspond to the values
of ¢,, and the columns correspond to the values,of

To evaluate expectations, we perform numerical integnaiging a two-step process that first

applies the Trapezoid rule to each continuous stochagimbla and subsequently applies Markov-
Chain integration to the discrete stochastic variable.nfegrate across the continuous stochastic
variables, first replicate the vector of, weights across the: realizations ofz,, to create an
n x m weighting matrix. Then weight each expectation and appdyTitapezoid rule across the
e, ~dimension (the rows) to collapse each expectation to sovedtrealizations. Finally, weight
each of these outcomes using the weights and once again apply the Trapezoid rule. This
step produces expectations conditional on the realizatidrihe discrete stochastic variable,
To integrate across each of these outcomes, simply weigiht eanditional expectation by its
likelihood and sum across all realizations (see the onlppeadix for details). With three or more
continuous stochastic variables, the product and trageziés become exponentially costly to
evaluate. In this case, we recommend using monomial ratetd{1998; Stroud(1971)].

Figure 4compares the accuracy of the TM, TL, and TC solutions to the Kleynesian model
with switching in the policy parametet$. We specifyp,; = ps; = 0.8. We plot the residuals
for the AM/PF (s, = 1) and PM/AF ; = 2) regimes, which are roughly the same. With a 4th-
order polynomial, TC is less accurate than TL. This is in plantrast with our findings in the
non-switching NK model, where Chebyshev interpolatioroissistently more accurate than linear
interpolation. This is because Chebyshev interpolatiangtobal method and cannot capture the
discontinuity as well as linear interpolation, which is addbmethod.

We only provide the consumption Euler equation errors,esthe firm pricing and bond Euler equation errors
imply the same qualitative results. The other errrors aadlale from the authors upon request.
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Figure 4: NK model with regime switching in the policy paraers consumption Euler equation errors in base 10
logarithms. TL: Time iteration with linear interpolatioRC: Time iteration with Chebyshev interpolation, TM: Time
iteration with a monomial basis. TC is based on a 4th ordebgs$teev polynomial ang;; = pao = 0.8.
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Figure 5: Policy functions for the NK model with regime swhiieg in the policy parameters, based on a time itera-
tion/linear interpolation technique (TL). measures the average duration of time spent in the activetagiipassive
tax regime (AM/PFs; = 1) in the ergodic distribution.
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6.2 EXPECTATIONAL EFFECTS The effect of monetary and fiscal policy shocks is dependent
on the probabilities in the transition matrix. The averageation of time spent in the active
monetary/passive tax regime (AM/R¥,= 1) in the ergodic distribution is given by

1 —p2

f=— 2
2 —pi — P2

Following Chung et al.(2007), figure 5shows how the policy functions in the AM/PF regime
change as declines, which demonstrates the nonlinearities that theolution method captures.
In the passive monetary/active fiscal regime (PM/AF= 2), a tax shock elicits no response from
the fiscal authority and the price level adjusts to stabiiebt. Wher¢ = 1, there is no chance of
moving to the PM/AF regime. Thus, Ricardian equivalencelsaind tax shock have no effect on
the policy functions. As the expected duration of time spenhe PM/AF regime rises, negative
tax shocks increase inflation, which, with costly price athuents, lowers output and consumption.
TL is particularly attractive for solving models with diste random variables. Afigure 5

illustrates, this method captures the curvature in theepdlinctions, even with linear interpolation.
Spectral methods increase accuracy, but rely on smootim#sspolicy functions and are far less
stable and less accurate when applied to models with regwmitehing. We were unable to achieve
convergence using TC wheén< 0.5 or when the polynomial order exceeds 4.

7 ZEROLOWERBOUND ON THENOMINAL INTERESTRATE

Most of the existing literature that studies the zero loweur (ZLB) uses log-linearized New
Keynesian model& However, using log-linearized models creates the poteiatidarge approx-
imation errors Braun et al.(2012; Fernandez-Villaverde et a2012)]. This section shows that
time iteration with linear interpolation is a stable andwete way to solve models with an oc-
casionally binding constraint. Chebyshev interpolat®far less stable and less accurate, since it
cannot accurately capture the kink in the policy functidret the ZLB constraint imposes.

We augment the simple Taylor rule in the New Keyesian modeidlude an automatic stabi-
lizer component, which increases the frequency of ZLB exe@tven the inequality constraint on
the nominal interest rate, the monetary policy rule becomes

ry = max{1, 7(m,/7*) " (3, /7)%" }. (5)

To simplify the analysis, we assume the economy is at itsleastimit and the government bal-
ances its budget each period by levying lump-sum taxes (gowent debt is in zero net supply).
The economy is subject to demand and supply shocks. The deshack propagates through the
discount factor and productivity is a proxy for the supplpsk They evolve according to

By = B(Bi-1/B)"" exp(ep,t),
2 = Z(21-1/%)°" exp(ezy),

wheree, ~ N(0,02%), z € {3, 2}.
Richter and Throckmortof2013 show that the calibration of the model (including the pa-
rameters of the stochastic processes) impacts determsiacg the boundary of the determinacy

1?Recent papers that solve the nonlinear model incAm®ba and Schorfheid@013; Basu and Bundick2012);
Fernandez-Villaverde et d2012; Gavin et al(2013; Gust et al(2012; Judd et al(2011); Mertens and Rav(2013.
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region imposes a clear tradeoff between the expected fneguend average duration of episodes
at the ZLB. We calibrate the model to ensure a determinatgisal Unless specified, the param-
eters are identical teection 3.2.1Given a quarterly calibratiori = 0.99 (1% real interest rate),
0 = 0.025, andyp = 77.67 (75 percent of firms cannot adjust prices each period). Todymtivity
and discount factor processes are semi-persistent wibhegressive coefficients, = psz = 0.75.
The shocks are normally distributed with mean zero and stahdeviationss, = 0.005 and
os = 0.0025. The monetary authority response coefficieptsand¢,, are set td.5 and0.1. We
normalize steady state output to 1 and solve for the impliealdy state productivity level.

Although the ZLB imposes a kink in the policy functions, tiveelar solution to the NK model
withouta ZLB constraint typically provides a good initial conjeedor the constrained nonlinear
model. The only difference from the solution procedure dbed insection 3.2.1s that we set
the gross nominal interest rate equallton any node where the Taylor rule implies< 1. The
nonlinear solver searches for policy function values ornewsade that satisfy the ZLB constraint.

Both the linear and nonlinear models contain a unique setiaté sariables—capital, produc-
tivity, and the discount factor. We discretize each statgabde with 41 points, which implies
68,921 nodes. Once again, the number of grid points is siNgebut denser grids are required
to accurately locate the kinks in the policy functions. Thir still flexibility when choosing the
policy functions. We specify policies over inflation (recpd), labor, and capital.

7.1 ZLB ResuLTs We solve the constrained nonlinear model using TL and TCiaxigs of
both methods have been recently used in the literatureguadth TC is far more common. TL is
just as flexible as the model without a ZLB. It converges for@ald range of model parameteri-
zations and grid specifications. Although TC is stable amdigate when the ZLB does not bind,
it is very unstable when the ZLB binds on even a small pergentd the state space, since it is
impossible for the algorithm to accurately locate the kiimkéhe policy functions with a continu-
ous approximation. Even with a high order Chebyshev polyabmC did not converge for most
parameterizations and grid specifications. In cases wh@rdid converge, the solutions implied
by the TL and TC algorithms are very different. With a 5th ar@aebyshev polynomial, the ZLB
binds on 6.5 percent of the nodes in the state space, whéed&B binds on only 2.1 percent of
the nodes with TL. Wider bounds on any of the state variablé#snerease these percentages.

Figure 6shows a productivity-discount rate cross-section of theestpace. We fix capital at 6
percent above steady state to concentrate on a region dbtieespace where the ZLB occasionally
binds and there is a kink in the policy functions. Both saaotmethods imply that the ZLB binds
in the upper right-hand corner of the state space, sincehgioductivity (positive supply shock)
and more patient households (negative demand shock) deciaféation and drive the nominal
interest rate to its ZLB? This figure makes clear that there are stark differencesesthe two
solution methods. The TL solution implies that the ZLB biraisonly 2 percent of the nodes
in this cross section (star markers), while the TC solutioplies that nearly 30 percent of the
nodes bind (square markers). These difference have impamalications for the conditional and
unconditional probabilities of hitting and staying at theBZ

Figure 7reports errors for the consumption Euler equation, firmipgequation, and bond
Euler equation as a function of the capital, productivityd ahe discount factor states in base 10
logarithms. We fix capital, productivity, and the discouaattbr at6, 7, and1.5 percent above their

13For a more detailed discussion on how productivity and distdactor shocks impact the model solutions and
dynamics in models with and without capital <gavin et al.(2013.
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Figure 6: Productivity-discount factor cross-sectionh# state space where capital is 6 percent above steady state.

steady state values. The darker (entire) shaded regiooaitedi where the ZLB binds when the
model is solved with TL (TC). Both methods are less accurdtensthe ZLB binds. However,
TL outperforms TC with a 5th order Chebyshev polynomial rdigss of whether the ZLB binds,
which is consistent with the resultssection 6 Even in alternative cross-sections of the state space
where the ZLB never binds, TL is always more accurate thanTHE is due to the kinks in the
policy functions, which make it very difficult for a global pmximation method, such as TC, to
find a polynomial that well-approximates regions of theestgtace where the ZLB binds and does
not bind. In the canonical models described above, TC andrétgmted a clear tradeoff between
accuracy and speed. In models with an inherent nonlineatyh as those with occasionally
binding constraints or Markov switching, TL is more accardaster, and more stable.

Accurately locating the kink of the policy functions has ionfant implications for economic
dynamics Figure 8shows the consumption and labor policy functions basedeiiith(solid line)
and TC (dashed line) solution methods. Once again, we fixalagii6 percent above steady state.
The inequality constraint induces a kink in the policy fuans that does not exist in other NK
models, even when they contain real frictions. As the ecgnomoves to higher productivity and
discount factor states where the ZLB does not bind, outgesrand inflation falls as firms revise
prices downward. In states where the ZLB binds, the reateésteate rises sharply, which reduces
demand. This causes output and inflation to fall. Althougthlsolution method produces similar
gualitative dynamics in states away from and at the ZLB, th@ngjtative dynamics of the model
are drastically different. This figure makes clear that tkiesblution method has trouble locating
the kink in the policy functions, as the policy functions illate across the state space.

A byproduct of inaccurately capturing the kinks in the pplignctions is that extrapolation will
be very inaccuratdrigure 9demonstrates that a global approximation with Chebyshémnpmi-
als will lead inaccurate expectations. The vertical dadhms are the bounds of the discretized
state space. Values of the approximating functions thailiside these bounds are extrapolated,
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Figure 7: NK ZLB model Euler equation errors in base 10 Iaans. Unless specified, capital, productivity, and the
discount factor are fixed at 6, 7, and 1.5 percent above st&atly. TL: Time iteration with linear interpolation, TC:

Time iteration with Chebyshev interpolation. TC is basedadsth order Chebyshev polynomial. The dark (entire)
shaded region indicates where the ZLB binds when the modelved with TL (TC).
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RICHTER, THROCKMORTON, & WALKER: PoLICY FUNCTION I TERATION

Linear Interpolation == Chebyshev Interpolation
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Figure 8: Policy functions based on the TL (solid line) and (@a@shed line) solution methods. Unless specified
capital, productivity, and the discount factor are fixed a7 6and 1.5 percent above steady state. The dark (entire)
shaded region indicates where the ZLB binds when the modelvgd with TL (TC).
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and will enter the expectation operator. If future varialdee computed using extrapolated values,
then significant error enters the expectation operatorgareqjuilibrium system. This additional
error is another cause of inaccuracy of Chebyshev apprdiximan the discretized state space.

8 CONCLUSION

Policy function iteration methods have long been known adialyle way to solve dynamic mod-
els nonlinearly. They are particularly useful for studyihg economic consequences of a wide
variety of potential policy outcomes. Despite the consabér benefits of this algorithm, it suffers
from several drawbacks. The most prohibitive feature of &gorithm is its reliance on grid-based
techniques, which exponentially increases the size of thblem with the number of state vari-
ables and the number of continuous stochastic componeartiirBation solution methods are far
less computationally expensive and are more appropriat@dalels that do not contain recurring
regime change or equilibrium paths that deviate far fronmdterministic steady state.

Another concern is whether these solution methods conghgteatisfy transversality condi-
tions, since it only iterates on the policy functions and hasormal mechanism for imposing
these restrictions. As a safeguard, however, it is easymalate a model for thousands of peri-
ods and check that its average asset levels (e.g., captadisbetc) are convergent. Moreover,
simulated paths in models that explicitly violate the trarsality condition will typically diverge
even if the algorithm converges. Although these exercisesal provide proof, they do provide
reasonable confidence that transversaility conditionsnete

Lastly, in models that contain significant curvature in tlodiqy functions, itcan be difficult
to obtain initial conjectures. The best starting point tagrate a guess for the nonlinear model is
always the solution to the linearized model. In almost alesa the linear solution provides a good
enough guess ensure that the policy functions convergeeindhlinear model. In cases where it
is not, we recommend two potential solutions: 1. use thalis®lution as an initial conjecture
for a variant of the nonlinear model, which may provide adretjuess for the nonlinear model
of interest, or 2. solve the model with a parameterizati@t thduces less curvature in the policy
function and slowly iterate on the parameter of interest.

Any numerical algorithm imposes direct costs onto the pogner. We reduce the costs as-
sociated with policy function iteration methods by prowiglia user-friendly suite of MATLAB
functions that introduce multi-core processing and Farirea MATLAB'’s executable function.
Within the class of policy function iteration methods, wevachte using time iteration with linear
interpolation. We apply this method to conventional RBC Aikdmodels and carefully document
how to chose policy functions, discretize the state spaterpolate/extrapolate future values, and
perform numerical integration. The use of multi-core pssieg alongside optimized code that
takes advantage of Fortran’s comparative advantage ataaj loops decreases solutions times
by a factor of 8 in the RBC model and a factor of 24 in the NK mod&breover, comparing time
iteration with linear interpolation to alternative solutitechniques demonstrates it is accurate, able
to capture important nonlinearities, and robust to modétls giscontinuities.
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A ONLINE APPENDIX (NOT FORPUBLICATION)

A.1 BRIEF REVIEW OF THE THEORY This section briefly reviews the theory behind monotone
operators as applied to DSGE models, using the resul&eénwood and Huffmafl995 (GH,
hereafter). We do not convey any new theoretical resultsibytly demonstrate how the monotone
map can be used to prove existence and uniqueness of arbequili We follow GH closely
because they proved existence of equilibrium in a very géremtup. Moreover, as advocated
by Datta et al.(2002, Datta et al.(2005, Mirman et al.(2008, the theoretical properties of the
monotone map can be extended to more complex setups. Proefgstence using monotone
operators are constructive in the sense that the numetgaiitam is a byproduct of the proof,
which only adds to the appeal of policy function iteratiogaithm methods.

A.1.1 EcoNOMIC ENVIRONMENT The economic environmentis standard. The model consists
of a continuum of measure one identical agents with preteen

Eqy Li:; 5tU(Ct)} :

where the momentary utility function is assumed to be $yrictcreasing, strictly concave and
twice differentiable, with/’'(0) = co. The production function is given by

Yt = F<kt7Kt7nt)7

where outputy;, is produced with the individual agent’s capital stogk, the aggregate capital
stock, K;, and is subject to a random productivity shogk,The productivity shock is assumed to
be drawn from a Markov distribution functio6(7;1|7;), with bounded support. The production
function is assumed to satisfy the Inada conditidins; . F} (K, K,n) = oo, be strictly increas-
ing and strictly concave in its first argument, and twiceeat#itiable in its first two arguments.
Moreover, GH also impose the following somewhat nonstathdasumptions:

1. 3K 3 F(K,K,n) < K
2. VKG(O,K], Fl(K,K,n)+F2(K,K,77)ZO and Fll(K,K,n)+F21(K,K,n)<O

Assumption 1 places an upper bound on the level of outputupsion 2 requires that the sum of
the marginal products of the individual and aggregate ahpitck be positive (along the equilib-
rium pathk = K). As noted by GH, these assumptions are innocuous and ho&viade range
of economies.

The agent’s dynamic programming problem is given by

V(k, K, ) = max {U(F(k, K,n) = K) + 5 / VKK n’)dG(n’ln)} , (6)
where aggregate capitdt;, has the following law of motiok” = Q (K, n). Let the optimal policy
function associated with6f be given byt’ = ¢(k, K, n). By standard arguments, one can derive
the corresponding Euler equation

U'(F(k, K, 7) — K) = B / U(F(K, K of) — K'Y (K, K )G (o )
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A stationary equilibrium is a pair of functions, = ¢(k, K,n) and K’ = Q(k, n), that satisfy
optimality (i.e., solves®)) and consistency;( K, K,n) = Q(K,n). We are now able to state the
main proposition of GH.

Proposition 1 (GH, pg. 615) There exists a nontrivial stationary equilibrium for theoeomy
described above.

The method of proof in GH follows that of Colemal®@1) and is our primary interest because
it uses Euler equation iteration and properties of monotpezators. For these reasons we repeat
the proof here. Let the sequence of aggregate laws of mdtidh,K, 7)) 22, evolve according to
H°(K,n) =0, and letH’ ™ (K,n) for j > 0 be defined as the solution farin the Euler equation

U'(F(K, K.n) - ) = / U'(F(z,2.1f) — B (e, 1) Fi (., )AG( ). (D)

(7) defines a sequential operator mappiiginto H’*!. GH show that the left-hand side of)(
is strictly increasing inz, while the right-hand side is strictly decreasingzif* This monotonic
mapping along with assumptions 1 and 2 imply the existeneeswailution to 7).

The intuition behind the result is straightforward: the weuce{H’(K,n)}52, produces a
monotonically increasing sequence for the aggregateatagitck, which is bounded above by
K. GH prove that the pointwise limit of this sequence of fuoit is the aggregate policy func-
tion lim; ., H?(K,n) = Q(K,n) and that the aggregate law of motion is nondegeneratedi.e.,
degenerate law of motion is one that satistid<, n) = F(K, K,n) for all K andp).

This mapping serves as the basis for numerical algorithetaidsed in this paper, among many
others [Colemanl1(991); Baxter(1991); Baxter et al(1990; Davig (2004; Davig et al.(2010; Bi
(2012]. While the purpose of this paper is to provide resourcesdaoice the cost of implementing
the computational algorithm down, the theoretical aspetii@monotone map is very appealing.

A.2 LINEAR INTERPOLATIONEXTRAPOLATION To get an idea of how linear interpolation
and extrapolation works, consider the following examplehwivo state variables;; andxz,. The
nearest perimeter around the poi@t;, z,), is formed by the four point§e, ;, z2;), (€14, T2i41),
(21,441, %24), and (141, 22,11), Whereid signifies the position on the grid. We want the policy
function value,f (2}, «}), but we only have policy function values for the four neagasints on
the grid (off the grid, we extrapolate using the nearest fmints that form a square on the edge
of the state space). First, holding fixed, interpolate/exptrapolate in the direction to obtain

f($1,z'+1, $2,i) - f($1,z'7 $2,z')

T1i+1 — L1

f(l’ll,l'li) = f(x1,,22:) + (le — T1;)

/
Ty — L1

/
Tii41 — X
== 1 f(@1,,20,) + ——————f(@1,i41, 22;) (8)
T1i41 — L1, T1i41 — L1,
/ /
Tii41 — X Ty — Ty
f(xlp 932,¢+1) == 1 f(xl,iaxZ,H—l) + —1 f(xl,i—i—la $2,i+1)- 9)
T1i+1 — L1y T1i+1 — T14
S——— ———

wi,i W1,i4+1

¥1n order to prove the right-hand side is strictly decreasthg additional assumption, < 0H’ (K, n)/0K <
[Fi (K, K,n) + F2(K, K,n)], needs to be imposed.
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Then interpolate/exptrapolate in the direction to obtain

)f(x’l, Toi11) — f(7), 72,)

fl@, ah) = f(a), wa,) + (v — 22,
LT2i+1 — L2

T2i+1 —xé f( /

= T, o) + ————— f(2), T2441). (10)
T2i+1 — T2 T2i+1 — L2,
—_———— —_————
w2i W2 i+1

Combining 8), (9) and (0) yields

(2, xh) = wo; (Wi, f (14, T2) + wiita f(T1,41, T24))
+ wo i1 (Wi f (@1, Toi1) + Wit [ (21,41, T2,i41))
= wl,iWZ,if(xl,h $2,z') + Wl,i+1W2,if<~T1,i+17 $2,z')

+ wiiwait1 f (%14, Tai41) + Wiir1wei1 f(T1i41, Toit1)

1 1
= E E Wity W2,it o f (T1itgns P24, ) »

Jj1=0 j2=0

which can be easily extended to any number of state varialesassume that the points for any
one dimension in the state space are uniformly spaced, vdmcplifies evaluation of the policy
functions. If unevenly spaced nodes are desired, Badrl t er px must be modified to correctly
locate the nearest nodes.

A.3 INTEGRATION A model with both continuous and discrete stochastic véegmtequires two
types of numerical integration. For continuous stochasatr@bles we apply either the Trapezoid
rule or Gauss-Hermite quadrature, and for discrete randamahles we use the corresponding
transition matrix to weight each outcome by its likelihood.

A.3.1 TRAPEzOID RULE Suppose there are realizations of the stochastic componentin

the process for some continuous variableSince these realizations show up in agents’ expec-
tations, we perform numerical integration to average acesch of thesen realizations. The
trapezoid rule is one method of numerical integration. Asisig uniformly spaced realizations of
g, the formula for the trapezoid rule is given by

By ®(, 21)] ~ Pr(e1)®(-, ze41(e1)) +2Pr(52)(q>(.’ 2a1(€2)))

4 Pr(e2)®(, 2141 (e2)) 42r Pr(es)(, 2e41(e3))

4 PrEm—)®( 21 (Em—1)) + Pr(em) B, 2141 (6m))
2

— % 23 Pr(ei)(@(, 2e41(21))) — Pr(e1) @ (-, z41(61)) — Pr(em)®(, 2e11(em)) |
i=1

Ae

Ae

whereAe is the distance between stochastic realizatitnsés; ) is the probability of realization,
and® is the value of the contents of the expectation operatogmgifie state of the economy. To
obtain the weights (the probabilities) in the trapezoi@tluncate the distribution of the stochastic
variable. For normal random variables, we recommend ttimg#he distribution at no less than
four standard deviations, since omitting more of the distibn often leads to inaccurate results.
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A.3.2 GAUSS-HERMITE QUADRATURE Another commonly employed method of numerical
integration is Gauss-Hermite quadrature. Suppose a shoti,a continuous variable, is nor-
mally distributed with meap and variance2. Then expectations can be written as

o0

By @1 (-, 211 (w))] = (27”72)_1/2/ Oy 1 (-, 2 () e~ ) gy,

—00

Applying the change of variables= (u — 1) /(v/20), the Gauss-Hermite quadrature rule is

E®1 (- 2001 (w)] = 7T_l/z/ Pyya (-, Zt+1(\/§<76 + #))6_620[5

—0o0

~ Z Wi P41 (-, 2041 (V208 + 1)),

i=1

whereg; are the realizations of the standard normal shdcks the value of the contents of the
expectation operator, and are Gauss-Hermite weights given by = 2"*nl\/7[H, 1(g;)] 2
H, ., is the physicists’ Hermite polynomial of order+ 1.1°

We usually adopt the Trapezoid rule over Gauss-Hermite rqiiaick because it is more stable.
Moreover, with dense and wide enough grids (at least 10 paimdl 4 standard deviations) for the
continuous shocks, the optimal policy functions undereites methods of numerical integration
are virtually identical, even though the Trapezoid ruléaebn a truncated distribution.

A.3.3 MARKOV CHAIN INTEGRATION Suppose a discrete stochastic variablegvolves ac-

cording to ann-state first-order Markov chaif?.Once again, these realizations show up in agents’
expectations, and we must integrate across thesealizations conditional on the previous state.
Suppose the transition matrix is given by

Pr[s; = 1|st—1 =1] Pr[ss =2|s4—1 =1] -+ Pr[s; =m|s;—1 = 1] P11 P12 0 Pim
P Pr[s; = 1|st—-1 =2] Pr[ss =2|s4—1=2] -+ Pr[s; =m|s;—1 = 2] P21 P22t Pom
Pr[s; = 1|st—1 =m]| Pr[s; =2|sy_1=m] -+ Pr[sy =m|s;—1 =m] Pmi Pm2 °  Pmm

where0 < p;; < land) ™ p; = 1foralli € {1,2,...,m}. Then the conditional expectation
can be written as

Dyq (v 21,041, 8 = 1)
. Dyq(vy22,041,8 =1)

By [®11(- ze41)[50 =] = [pil Pi2 - pim] .
Dy1(vs Zmtt1, 8t = 1)

If a model contains both continuous and discrete stochaatiables, first integrate across the
continuous random variables to obtain a set of values, tiondi on the realizations of the discrete
stochastic variable. Then weight each of these values ky ¢beresponding likelihood. This
process yields an expected value across all stochasticarmngs in the model.

SWe provide a functionghquad. m to compute the Gauss-Hermite weights. To calculate th#ficieats of the
Hermite polynomialghquad. mrequiresHer ni t ePol y. m which is written by David Terr and readily available
on the MATLAB file exchange.

16Recall that higher order Markov chains can always be desgiily a first-order transition matrix.
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