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ABSTRACT

Policy function iteration methods for solving and analyzing dynamic stochastic general
equilibrium models are powerful from a theoretical and computational perspective. Despite
obvious theoretical appeal, significant startup costs and areliance on grid-based methods have
limited the use of policy function iteration as a solution algorithm. We reduce these costs
by providing a user-friendly suite of MATLAB functions thatintroduce multi-core processing
and Fortran via MATLAB’s executable function. Within the class of policy function iteration
methods, we advocate using time iteration with linear interpolation. We examine a canonical
real business cycle model and a new Keynesian model that features regime switching in pol-
icy parameters, Epstein-Zin preferences, and monetary policy that occasionally hits the zero-
lower bound on the nominal interest rate to highlight the attractiveness of our methodology.
We compare our advocated approach to other familiar iteration and approximation methods,
highlighting the tradeoffs between accuracy, speed and robustness.
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1 INTRODUCTION

The Great Recession, the prospect of exponentially rising government debt, interest rates at the
zero lower bound, and potential sudden changes to monetary and fiscal policy make clear that non-
linearities are a crucial element to contemporary macroeconomic analysis. Successfully modeling
these scenarios requires large and persistent deviations from the non-stochastic equilibrium. Linear
approximations around a deterministic steady state poorlycapture these equilibrium properties. A
nonlinear analysis is needed.

Policy function iteration methods for solving and analyzing dynamic stochastic general equi-
librium models are powerful from a theoretical and computational perspective. Despite obvious
theoretical appeal, significant startup costs and a reliance on grid-based methods have limited the
use of policy function iteration as solution algorithm. We reduce these costs by providing a user-
friendly suite of MATLAB functions. Within the class of policy function iteration methods, we
advocate using time iteration with linear interpolation, since it provides a flexible and accurate
way to solve dynamic stochastic general equilibrium modelswith substantial nonlinearity.

We demonstrate the usefulness of our approach by examining several topical examples. We be-
gin with a simple real business cycle model and a standard NewKeynesian model. These canonical
models are useful starting points because their solutions and properties are well known. They also
provide useful benchmarks for speed and accuracy.Section 3provides step-by-step instructions for
how to solve these models using our advocated approach in MATLAB. We introduce multi-core
processing using the Parallel Computing Toolbox (PCT) and integrate Fortran through MATLAB
executable functions (MEX). Using a 6-core processor (3.47GHz each) and MEX, our suite re-
duces computational time by a factor of 12 in the RBC model andby a factor of 24 in the NK
model relative to non-parallelized code that does not use MEX. Additional stochastic components
further increase the speeds gains associated with MEX and parallelization.Section 4analyzes the
tradeoffs between accuracy and speed using alternative iteration and approximation methods.

We demonstrate the flexibility of our advocated approach using the canonical New Keynesian
model. Section 5adds Epstein-Zin preferences to show that our suite can be used to study asset
pricing facts.Section 6introduces regime switching in monetary and fiscal policy parameters with
an emphasis on understanding the expectational effects generated by regime switches.Section 7
adds a zero lower bound on the nominal interest rate set by themonetary authority, which intro-
duces a kink in the policy functions. We provide MATLAB code with extensive documentation for
each example.Richter and Throckmorton(2012) provide additional supporting code.

The primary benefit of our advocated approach over perturbation methods [Gaspar and Judd
(1997); Judd and Guu(1993, 1997); Schmitt-Grohe and Uribe(2004)] is its ability to easily ac-
count for sudden policy changes and other inherent nonlinearities (i.e., zero interest rate bound,
default, irreversible investment,etc.). The flexibility and simplicity of the algorithm has led a re-
cent segment of the literature to use this approach to estimate monetary and fiscal policy regimes,
quantify expectational effects of policy changes, and study key counterfactual policies.1 The suite
of programs described in this paper can be easily adapted to handle models with: [i] endogenous
regime change, [ii] temporarily nonstationary processes,[iii] binding collateral constraints, [iv]
stochastic volatility, [v] news shocks, and [vi] heterogeneous agents. Although this method is grid-
based, our suite of programs can solve models with state spaces that contain more than one million

1SeeBasu and Bundick(2012); Bi (2012); Bi et al. (2013); Chung et al.(2007); Davig and Leeper(2006, 2008);
Davig et al.(2010, 2011); Gavin et al.(2013); Kumhof and Ranciere(2010); Mertens and Ravn(2013); Richter(2012).
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nodes and multiple stochastic processes in roughly one houron a standard 6-core computer.
We remind readers that policy function iteration methods are a numerical byproduct of using

monotone operators to prove existence and uniqueness of equilibria [Coleman (1991)]. This pro-
vides an additional benefit to using policy function iteration methods, as powerful approximation
results and proofs of existence and uniqueness can be employed in conjunction with the numerical
algorithm. We briefly review the theory of monotone operators in an online appendix.

2 PRACTICAL GUIDE

All of the routines required to implement the algorithm are written in MATLAB or compiled as
MEX (Fortran 90) functions. This code and the code used to solve the models below are publicly
available athttp://www.auburn.edu/~awr0007/. The algorithm is broken down into a
sequence of easily implementable steps that are executed with the following set of functions:

• script.m - Main script that establishes all user-specified inputs in the structure,O, and
executes all functions. It contains a parallel for-loop that distributes the optimization routine
at each point (node) in the discretized state space across all locally available processors,
which considerably improves computation time. Optimization is performed with Chris Sims’
csolve.m by finding updated policy functions that satisfy the equilibrium conditions of the
model until a user-specified convergence criterion is met.

• parameters.m - Outputs a structure,P, containing the baseline calibration of the model.

• steadystate.m - Outputs a structure,S, with inputP, containing the deterministic steady
state and implied parameters of the model.

• grids.m - Outputs a structure,G, with inputsO andP, containing the discretized state
space. The structureO contains the number of grid points and bounds of each state variable.

• guess.m - Outputs an initial conjecture for each policy function with inputsO, P, S, andG.
The structureO specifies whether the initial conjectures for the policy functions are drawn
from the log-linear solution to the model or the most recent iteration, which allows the user
to resume the algorithm if it is interrupted prior to convergence.

• variables.m - Outputs a structure,V, containing an index of variables, forecast errors,
and shocks and the corresponding variable descriptions.

• linmodel.m - Outputs the linear transition matrix,T, the impact matrix of the stochastic
realizations,M, and a 2-element vector of flags,eu, indicating existence and uniqueness of
the linear solution. The linear model is solved using Chris Sims’ gensys.m algorithm and
requiresP, S, andV as inputs.gensys.m is user written MATLAB code that is designed
to solve stochastic linear rational expectations models. The key to using this code is to map
the model into the form

T0Xt+1 = T1Xt +Ψεt+1 +Πηt+1,

whereX is a vector of variables (exogenous and endogenous),ε is a vector of shocks, andη
is a vector of forecast errors whose elements satisfy

ηxt+1 = xt+1 −Etxt+1
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for somex ∈ X. Assuming the shocks are normally distributed and mean zero, gensys
outputs the coefficients,T andM , of the following equation:

Xt+1 = TXt +Mεt+1.

• eqm.m - Outputs a matrix,R, containing the residuals to a subsystem of expectational equa-
tions the are constrained by the remaining equations in the equilibrium system. This function
requires as inputs the structuresP, S andG, a vector of initial conjectures, the state at each
node, and the current policy functions (required for interpolation/extrapolation).

• allterp*.m - Performs linear interpolation and extrapolation. MATLABand Fortran rou-
tines (Fallterp*.f90) are provided. The naming convention uses a sequence of three
integers representing the number of state variables, policy functions, and continuous stochas-
tic variables. These functions can evaluate multiple points, but, in the interest of speed, are
not generalized and may require straightforward modifications for alternative combinations
of states, policies, and stochastic variables.2

• pf.mat - Data array containing the current policy functions and allstructures.

2.1 NUMERICAL ALGORITHM This section outlines how to implement policy function iteration
with time iteration and linear interpolation. There are a number of model-specific initializations:
model parameters, steady state values, and grid parameters(e.g., the number of points in each
dimension and the distance between them) specified by the programmer. Through trial and error,
we found that the initializations are best performed in the following order.

First, set the baseline calibration of the model inparameters.m. In addition, specify a
convergence criterion for the policy functions, which affects the accuracy and speed of the solution.

Second, calculate (using a nonlinear solver, if necessary)the deterministic steady state and any
implied parameters insteadystate.m. Steady state values are required for solving the linear
model and are helpful for setting up the discretized state space.

Third, specify the number of points and the bounds for each grid, which are contained in
structureO and specified inscript.m. The built-in MATLAB functionlinspace establishes
a grid for each state variable ingrids.m. The built-in MATLAB functionndgrid creates an
array for each state variable where every position represents a unique permutation of the discretized
state variables. The total number of elements in each array is the product of the number of points
assigned to each state variable and represents the number ofnodes in the discretized state space.

Fourth, establish an optimal set of variables as numerical policies. The set of possible policy
functions is not unique, but as a rule of thumb, establish policy functions over the minimum set
of variables required to solve for all timet variables given the state of the economy. If possible,
reduce the number of policy variables to the number of equations with expectations operators.

Finally, obtain initial conjectures (guesses) for each policy function. Some models are sensi-
tive to the guess, but, in general, a linear solution provides a sufficient approximation.3 We use

2Richter and Throckmorton(2012) provide the Fortran and MATLAB source code, as well as the compiled 32-
and 64-bit MEX functions, for each of the examples discussedin the paper.

3This is not true for all models. For example, if the model contains discrete variables, such as state dependent
parameters, then the conditional linear solution may poorly approximate the global solution. In this case, one can
obtain a linear solution for each realization of the parameter(s). A linear combination of those solutions typically
provides a good initial conjecture for the state-dependentnonlinear model.
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Sims’ (2002) gensys.m algorithm.4 Enter the log- or level-linear system intolinmodel.m.
guess.m callslinmodel.m to solve the linear model and generate initial conjectures.

After obtaining initial conjectures for each of the policy functions, set up the equilibrium sys-
tem ineqm.m. Using the original policy function guesses or the solutionfrom the previous itera-
tion, solve for all timet variables using all of the equilibrium conditions, except those that contain
expectations and require numerical integration. Next, calculate updated (timet + 1) values for
each of the policy variables using linear interpolation/extrapolation.5 We provide two computa-
tional routines for this step—one written in MATLAB (allterp*.m) and one written in Fortran
90 (Fallterp*.mex*) but called as a MATLAB executable (MEX) function. The Fortran code
is much faster, but for those who are unfamiliar with MEX, theMATLAB function is sufficient
for relatively small models—those with no more than four state variables and only one stochastic
component. Further details about these routines are given in an online appendix.

After computing the updated values of each policy variable,solve for the remaining timet+ 1
variables needed to calculate timet expectations by applying numerical integration using the trape-
zoid rule or Gauss-Hermite quadrature. Additional detailsabout these integration methods are pro-
vided in an online appendix. Finally, using Chris Sims’ rootfinder,csolve.m, solve for the zeros
of the equations with embedded expectations, subject to each of the remaining equilibrium condi-
tions. The output ofcsolve.m on each node are policy values that satisfy the equilibrium system
of equations to a specified tolerance level. This set of values characterizes the updated policy func-
tions for the next iteration. If the distance between the guess and the updated policy values is less
than the convergence criterion on all nodes, then the policies have converged to their equilibrium
values. Otherwise, use the updated policy functions as the new guess until convergence.

3 EXAMPLES

We first consider two conventional models—the real businesscycle (RBC) model and the new Key-
nesian (NK) model with textbook treatments provided byMcCandless(2008) andWalsh(2010).

3.1 RBC MODEL The representative household chooses sequences,{ct, kt, nt}∞t=0, that maxi-
mize expected lifetime utility,E0

∑
∞

t=0 β
t{c1−σ

t /(1−σ)−χn1+η
t /(1+ η)}, whereβ is the subjec-

tive discount factor,1/σ is the intertemporal elasticity of substitution,1/η is the Frisch elasticity
of labor supply,c is consumption, andn is labor hours. These choices are constrained by

ct + kt = wtnt + rkt kt−1 + (1− δ)kt−1

kt = (1− δ)kt−1 + it,

wherew is the real wage,rk is the real rental price of capital,k is the capital stock, andi is
investment. The household’s optimality conditions imply

1 = βEt{(ct/ct+1)
σ(rkt+1 + 1− δ)} and wt = χnη

t c
σ
t .

Output is produced according toyt = ztk
α
t−1n

1−α
t , where0 < α < 1. Productivity follows

zt = (1− ρ)z̄ + ρzt−1 + εt,

4Other methods include Uhlig’s (1997) toolkit and Klein’s (2000) algorithm.
5Alternatively, Chebyshev polynomials or cubic splines could be used for interpolation/extrapolation. We advocate

for linear interpolation since it is faster and more stable,but we consider alternative methods insection 4.
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wherez̄ is the average productivity level, andεz ∼ i.i.d. N(0, σ2
ε). A perfectly competitive firm

chooses{kt, nt} to maximizeyt − wtnt − rkt kt−1. The firm’s optimality conditions imply

rkt = αyt/kt−1 and wt = (1− α)yt/nt.

The aggregate resource constraint is given byct + it = yt. A competitive equilibrium is given by
the household’s and firm’s optimality conditions, the production function, the law of motion for
capital, the aggregate resource constraint, and the productivity process.6

3.1.1 SOLVING THE MODEL The following are detailed instructions on how to setup and solve
the nonlinear model with time iteration and linear interpolation.

• There are five structural parameters. Using a quarterly calibration, these parameters are set
to β = 0.99 (4% real interest rate),δ = 0.025, α = 0.33, σ = 1, andη = 1. The productivity
process is persistent withρ = 0.95 andz̄ = 1. Productivity shocks are normally distributed
with mean zero and standard deviationσε = 0.0025. The convergence criterion is10−10.

• Given the steady state labor share,n̄ = 0.33, the deterministic steady state has a straightfor-
ward analytical solution.

• There are two continuous state variables,kt−1 andzt, and one continuous stochastic variable,
εt+1, that are discretized. The bounds of the state space and the number of points for each
state variable are contained in the structureO and inputs ofgrids.m. The capital and
productivity grids are evenly spaced with bounds that are 5 percent from their steady state
values. These bounds minimize extrapolation and ensure that the model simulates on the
discretized state space. With only two state variables, we can afford dense grids. We specify
41 points for each state variable (kt−1 and zt), which implies 1,681 nodes. No specific
number of grid points is required for any of the continuous state variables (minimum 3
points), but using more grid points on state variables that contribute to the curvature of the
policy functions improves accuracy. However, there is delicate balance between increasing
the number of grid points and keeping the problem numerically tractable.

• We enter the log-linear equilibrium system (8 equations) into linmodel.m to produce
initial conjectures to the nonlinear model.

• We choosent as a policy since it allows us to conveniently calculate the time t variables, but
this choice is not unique. Given{kt−1, zt, nt}, it is easy to calculateyt from the production
function,it from the aggregate resource constraint,kt from the law of motion for capital, and
ct by combining the firm’s and household’s optimality conditions for labor. To obtainnt+1

interpolate/extrapolate for all realizations ofεt+1. Given{kt, zt+1, nt+1}, calculatect+1 and
rkt+1 (from the firm’s optimality condition), which enter expectations. We use Gauss Hermite
quadrature to integrate acrossεt+1. csolve.m searches for labor policy values that satisfy
the equilibrium system ineqm.m by finding the zero of the consumption Euler equation.

• After entering the equilibrium system ineqm.m, executescript.m to run the algorithm.
To take advantage of the speed gains associated with the parallel toolbox, execute the com-
mandmatlabpool, which pools all locally available processors.
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All MATLAB (No MEX) Interpolation using MEX

Processors Structures No Structures Structures No Structures
1 129 (1.0) 100 (1.3) 90.5 (1.4) 62.9 (2.1)
2 65.6 (2.0) 52.4 (2.5) 47.1 (2.7) 34.2 (3.8)
6 27.5 (4.7) 23 (5.6) 20.7 (6.2) 16.6 (7.8)

Table 1: RBC model solution times–MEX, parallelization, structures comparison (in seconds). Based on a state space
of 1,681 nodes (41 points onkt−1, 41 points onzt). We specify 10 realizations ofεt+1. The routines were computed
with an Intel Xeon X5690 6-core processor (3.47GHz) operating 64-bit Windows 7. The values in parentheses are the
speed gains relative to the slowest setup.

3.1.2 SOLUTION TIMES The major drawback with time iteration is its reliance on a nonlinear
solver that executes on each node, which is computationallyexpensive. The introduction of multi-
core processing and Fortran via MEX reduces this computational burden (seetable 1). Multi-core
processing in MATLAB is easily facilitated with the PCT, which creates a “worker pool” consisting
of locally available processors. Without the PCT, MATLAB only uses one processor even though
additional processors are available in most computers. In this case, computational resources are not
maximized and each node in the discretized state space is evaluated sequentially. The PCT allows
MATLAB to evaluate multiple nodes simultaneously, which produces near linear speed gains.

The interpolation/extrapolation step imposes the most significant slowdown. Our algorithm
achieves further speed gains by using a Fortran 90 MEX function that is called in MATLAB. For
relatively small models (two or fewer state variables), full implementation using only MATLAB
routines is relatively inexpensive. For larger models, such as the NK model, the benefits of MEX
clearly outweigh the costs. The two pitfalls of programmingin Fortran are the need for a MEX
gateway function and the noninteractive nature of the editor. The MEX gateway function initializes
the function’s inputs and outputs and calls other subroutines that perform the actual task. There
is a fixed cost in understanding how to initialize various functions with MATLAB’s application
programming interface, allocate memory, and create matrices and arrays that properly interact with
MATLAB. An additional cost is the inconvenience of debugging. MATLAB’s editor is proactive
in addressing problem areas in scripts; Fortran is obviously not since it is a compiled language.
Even if a Fortran function successfully compiles via MEX there still may be problems in the code
that require further attention. Our Fortran functions are written using the free-format, which is
relatively easy to learn since it is very similar to MATLAB syntax.7 Once the Fortran function is
compiled using MEX (which requires Intel Visual Fortran), anew MEX function is created, which
is called in MATLAB in the exact same way as MATLAB’s built-infunctions.

MATLAB structures are a convenient way to group data—such asparameters, steady state
values, grids, and model-specific options—and reduce the number of inputs when calling func-
tions. The drawback is that MATLAB requires more time to access values contained in structures.
Thus, we often forfeit convenience and simplicity in favor of faster code by removing the values

6We also provide code to solve the canonical RBC model with three conventional frictions—capital adjustment
costs, variable utilization rates, and external habit persistence.

7By default, MEX only interprets fixed-format (f77) Fortran code. Since our fortran code is written in the free-
format (f90), MATLAB batch files need to be modified. Navigateto the mexopts folder in the MATLAB directory
(e.g., . . . \MATLAB\R2010a\bin\win64\mexopts), and open the batch file corresponding to the installed version of
Intel Visual Fortran (IVF) in a text editor. Delete the ‘/fixed’ flag and save the batch file. Then usemex -setup to
select IVF as the compiler in MATLAB. MATLAB must be restarted anytime the batch file is changed.
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contained in the structures before theparfor loop.
Table 1reports (in seconds) how the solution times differ across the three modifications dis-

cussed above—multi-core processing, interpolation/extrapolation via MEX, and MATLAB struc-
tures. Using two processors instead of only one (which is thedefault) reduces the solution time
by nearly 50 percent regardless of the choice to use MEX or structures. Using MEX also cuts the
solution time in half, which is independent of the number of processors or the use of structures.
In both cases, adopting structures simplifies the code, but it imposes a fixed cost of roughly 30
seconds, which decreases with the number of processors.

The values in parentheses are the speed gains relative to theslowest setup. Notice that it does
not increase one-for-one with the number of processors, which is indicative of communication
overhead. Additional processors still provide evident speed gains, but this benefit is limited if the
code is not optimized for speed. For example, code that employs six processors without MEX while
retaining structures yields nearly the same speed gain as code that employs just two processors, but
uses MEX and removes the structures. Overall, using six processors with optimized code (MEX
and no structures) reduces the solution time by a factor of nearly 8.

3.2 NEW KEYNESIAN MODEL The representative household chooses{ct, nt,Mt, kt}∞t=0 to
maximize expected lifetime utility,

E0

∞∑

t=0

βt

{

c1−σ
t

1− σ
− χ

n1+η
t

1 + η
+ ν

(Mt/Pt)
1−κ

1− κ

}

, χ, ν > 0

wherePt is the aggregate price index,Mt is nominal money balances, and1/κ is the interest (semi)
elasticity of money demand. The household’s choices are constrained by

ct +mt + it + bt = (1− τt)(wtnt + rkt kt−1) + (mt−1 + rt−1bt−1)/πt + dt,

kt = (1− δ)kt−1 + it,

where lower case letters denote real quantities (xt = Xt/Pt), πt = Pt/Pt−1 is the gross inflation
rate,bt is the stock of real government bonds,τt is a proportional tax rate levied against capital and
labor earnings, anddt is the share of real firm profits. Optimality implies

χnη
t c

σ
t = (1− τt)wt,

νm−κ
t = (1− 1/rt)c

−σ
t ,

1 = βrtEt{(ct/ct+1)
σ/πt+1},

1 = βEt

{
(ct/ct+1)

σ
(
(1− τt+1)r

k
t+1 + 1− δ

)}
.

The production sector consists of monopolistically competitive intermediate goods producing
firms who produce a continuum of differentiated inputs and a representative final goods producing
firm. Each firmi ∈ [0, 1] in the intermediate goods sector produces a differentiatedgood,yt(i),
with identical technologies given byyt(i) = kt−1(i)

αnt(i)
(1−α), wherek(i) andn(i) are the levels

of capital and employment used by firmi. Each intermediate firm chooses capital and labor to
minimize its operating costs,rkt kt−1(i) + wtnt(i), subject to its production function.

Using aDixit and Stiglitz(1977) aggregator, the representative final goods producer purchases
yt(i) units from each intermediate firm to produce the final good,yt ≡ [

∫ 1

0
yt(i)

(θ−1)/θdi]θ/(θ−1),

7
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whereθ > 1 measures the elasticity of substitution between the intermediate goods. Maximizing
profits for a given level of output yields the demand functionfor intermediate inputs given by
yt(i) = (pt(i)/Pt)

−θyt, wherePt = [
∫ 1

0
pt(i)

1−θdi]1/(1−θ) is the price of the final good. Following
Rotemberg(1982), each firm faces a cost to adjusting its price, which emphasizes the potentially
negative effect that price changes can have on customer-firmrelationships. Using the functional
form in Ireland(1997), real profits of firmi are

dt(i) =

[(
pt(i)

Pt

)1−θ

−Ψt

(
pt(i)

Pt

)
−θ

− ϕ

2

(
pt(i)

π̄pt−1(i)
− 1

)2
]

yt,

whereϕ ≥ 0 determines the magnitude of the adjustment cost,Ψ is real marginal costs, and̄π is
the steady state gross inflation rate. Each intermediate goods producing firm chooses their price
level, pt(i), to maximize the expected discounted present value of real profits Et

∑
∞

k=t qt,kdk(i),
whereqt,t ≡ 1, qt,t+1 = β(ct/ct+1)

σ, andqt,k ≡
∏k

j=t+1 qj−1,j is the stochastic discount factor
between periodst andk > t. In a symmetric equilibrium, all intermediate goods producing firms
make the same decisions and the optimality condition becomes

ϕ
(πt

π̄
− 1
) πt

π̄
= (1− θ) + θΨt + ϕEt

[

qt,t+1

(πt+1

π̄
− 1
) πt+1

π̄

yt+1

yt

]

.

In the absence of costly price adjustments (i.e.,ϕ = 0), the real marginal cost of producing a unit
of output equals(θ − 1)/θ, which is the inverse of the firm’s markup of price over marginal cost.

The fiscal authority finances a constant level of discretionary spending,̄g, through proportional
taxes on capital and labor, seigniorage revenues, and by issuing one-period nominal government
debt. The government’s flow budget constraint is given by

mt + bt + τt(wtnt + rkt kt−1) = ḡ + (mt−1 + rt−1bt−1)/πt.

FollowingLeeper(1991), the monetary and fiscal authorities set policy according to

rt = r̄(πt/π
∗)φ and τt = τ̄ (bt−1/b

∗)γ exp(ετ,t),

whereπ∗ andb∗ are the target levels of debt and inflation,φ andγ are parameters controlling the
policy responses to inflation and debt, andετ,t ∼ i.i.d.N(0, σ2

τ ).
The aggregate resource constraint is given byct + it + ḡ = [1 − ϕ(πt/π̄ − 1)2/2]yt. Equilib-

rium is characterized by the household’s and firm’s optimality conditions, the government’s budget
constraint, the monetary and fiscal policy rules, and the aggregate resource constraint.

3.2.1 SOLVING THE MODEL The following instructions provide a complete descriptionon how
to solve the nonlinear model with time iteration and linear interpolation.

• There are seven structural parameters. Given an annual calibration, these parameters are
set toβ = 0.9615 (4% real interest rate),σ = 1, η = 1, κ = 1, θ = 7.66 (15% price
markup),δ = 0.1, andϕ = 10. The monetary policy parameter,φ = 1.5, and the fiscal
policy parameter,γ = 0.15, which guarantees a unique and bounded solution. Fiscal policy
shocks are normally distributed with mean zero and standarddeviationστ = 0.001.
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Processors No MEX Interpolation using MEX Equilibrium system in MEX

1 144.8 (1.0) 59.5 (2.4) 22.6 (6.4)
2 75.6 (1.9) 31.8 (4.6) 13.0 (11.1)
6 28.0 (5.2) 13.2 (11.0) 6.1 (23.7)

Table 2: NK model solution times—MEX and parallelization comparison (in seconds). Based on a state space of 2,401
nodes (7 points on each continuous state variable). We specify 10 realizations ofετ . The routines were computed with
an Intel Xeon X5690 6-core processor (3.47GHz) operating 64-bit Windows 7. The values in parentheses are the speed
gains relative to the slowest setup.

• The preference parametersχ andν are pinned down by the steady state labor share,n̄ = 0.33,
and the velocity of money,v = 3.8. Given the steady state tax rate,τ̄ = 0.21, and the share
of government spending to output,ḡ/ȳ = 0.17, the remaining steady state values have a
closed-form solution.

• The set of state variables for the linearized model,mt−1, rt−1, bt−1, andkt−1, can be reduced
to at, bt−1, andkt−1 in the nonlinear model, whereat ≡ mt−1 + rt−1bt−1 is real government
liabilities. However, it is necessary to include the fiscal policy shock,ετ,t, in the state to
solve for the timet tax rate. Thus, the minimum state in the nonlinear model consists of
{at, bt−1, kt−1, ετ,t}.

• The NK model allows less flexibility for choosing policy functions. The presence of Rotem-
berg adjustment costs imply that inflation is a required policy to analytically solve for all
time t variables. We specify labor as a policy function to pin down output. Additionally, we
choose capital as a policy to minimize the number of computations. Given these policies and
the state, all timet variables fall out naturally from the equilibrium conditions.

• We specify seven points on each continuous state variable, which implies 2,401 nodes. The
number of grid points is subjective, but the more dense the grid, the greater the accuracy
of the solution. In models this size, we recommend first solving the model with relatively
sparse grids and gradually increasing the density of the grids until there is no noticeable
change in the policy functions. One way to do this is to use thesolution with a sparse grid to
interpolate the policy functions on a denser grid.

3.2.2 SOLUTION TIMES Relative to the RBC model presented insection 3.1, the NK model
contains two features that increase computational time. First, there are two additional state vari-
ables. With seven grid points on each continuous state variable, this increases the number of nodes
in the discretized state space by about 40 percent. Second, there are two additional policy func-
tions, which double the amount of interpolation/extrapolation.

Table 2reports speed test results across the number of processors and the amount of com-
putations performed with MEX/Fortan. Once again, introducing multi-core processing produces
near-linear speed gains regardless of the involvement of MEX. We report three different levels of
MEX involvement: 1. none of the computations are performed using MEX, 2. only the interpola-
tion/extrapolation step is written in Fortran and called using MEX, and 3. the entireeqm function
is written in Fortran and called bycsolve.m as a MEX function. Programming the entire equi-
librium system in Fortran significantly reduces computational time. With six cores, using MEX
for the interpolation/extrapolation step cuts the computational time in half, but when the entire
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Acronym FM FC TL TC

Iteration Method Fixed-Point Fixed-Point Time Time
Approx. Method Monomial Basis Chebyshev Basis Linear Interp. Chebyshev Interp.

Table 3: Alternative iteration and approximation methods.

equilibrium system is written entirely in Fortran the algorithm is additional 2.5 times faster. The
biggest drawback with programming the entire equilibrium system in Fortran and compiling it with
MEX is that it is tedious to debug and requires a model-specific Fortran function. The interpola-
tion/extrapolation MEX functions, on the other hand, are general and can be used to solve different
models. For users who are less familiar with Fortran, the additional start-ups costs may outweigh
the significant speed advantage of using additional amountsof MEX.

In total, multi-core processing and MEX reduces computational time from 144 to only 6
seconds—a speed factor of nearly 24 in the NK model. When we compile the equilibrium sys-
tem to the RBC model in MEX, computational time falls to 10 second, a speed factor of 12 over
the slowest setup. The reason for the significant improvement in relative speed gains over the RBC
model is due to thefor-loop in the interpolation/extrapolation step over two additional policies
and thefor-loop required by the non-linear solver,csolve.m.8 Thus, these speed factors would
be even larger with additional state variables or continuous stochastic variables.

Coding the entire time iteration/linear interpolation algorithm in Fortran and compiling it as a
MEX function achieves further speed gains. With the exact same setup the model solves in about
0.5 seconds, which is fast enough to estimate nonlinear models with a particle filter. However, this
approach imposes additional startup costs. First, it requires the user to learn how to call IMSL
libraries, since few functions are intrinsic to Fortran. Second, the user would have to parallelize
the code using either the Fortran MPI or OpenMP instead of thePCT. Fortunately, OpenMP is
straightforward to implement, since it does not require explicit memory management like the MPI,
but it cannot parallelize code across networked computers.Third, it requires the user to either
programcsolve in Fortran or use a built-in solver in the IMSL package such asdneqnf. Given
these costs and the challenges of debugging the code, we advise programming the entire algorithm
in Fortran only in cases where maximum speed gains are required. Regardless of the amount of
computations we execute with MEX functions, we always use MATLAB as our interface, since it
has a convenient GUI and it is easy to store data in structures, run simulations, and plot results.

4 COMPARISON WITH ALTERNATIVE SOLUTION TECHNIQUES

This section considers alternative solution techniques. We first solve the model using a log-linear
approximation around its deterministic steady state. Thismethod is very attractive because first-
order Taylor approximations are straightforward to obtain, the solution to the equilibrium system
is quick to compute, existence and uniqueness conditions are well established, and large models
(in terms of the number of shocks and states) do not increase the computational burden. However,
these benefits can come at a steep cost—inaccuracy outside ofa close neighborhood around the
deterministic steady state and an inability to solve modelswith inherent nonlinearities.

8Solution times are not directly comparable across models because the speed of convergence may differ. For
example, the NK model is larger in terms of the number of policy functions and the size of the state space, but the
solution time is similar to the RBC model since the RBC model takes four times as many iterations to converge.
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Within the class of policy function iteration methods, we compare time iteration (our advocated
approach) with fixed-point iteration [Judd(1998)]. The downside of time iteration is that it is
costly to call a nonlinear solver on every node. Thus, the solution times can be slow relative
to fixed-point iteration. Fixed-point iteration evaluatesthe policy functions at current and future
values of the state to back out the policy function updates from the Euler equations. In sharp
contrast, time iteration only evaluates the policy functions at future values of the state and requires
a nonlinear solver to solve for the policy functions at current values of the state. Moreover, fixed-
point iteration does not guarantee that the equilibrium system of equations is satisfied on each
iteration to a specified tolerance level, making it potentially less stable than time iteration.

We also consider alternative approximation methods. Linear interpolation locally approximates
the policy functions at each node in the state space. As an alternative to this local approximation
method, we adopt projection methods, which build global approximations of the policy functions,
but still rely on grid-based iterative techniques [Judd(1992, 1998)]. Projection methods postulate
that the policies can be written as a function of a user-specified basis. We consider monomial and
Chebyshev bases, whose coefficients are updated by minimizing the sum of squared residuals.

The accuracy of global solution methods depends on the choice of a basis function. Given
a chosen basis, each iteration implies new least squares estimates of the coefficients that glob-
ally approximate the policy function. As alternatives to our advocated approach (TL), we apply
fixed-point iteration with a monomial (FM) and Chebyshev polynomial (FC) basis and time iter-
ation with Chebyshev interpolation (TC). Henceforth, we distinguish between methods using an
acronym where the first letter is the iteration technique (time or fixed) and the second letter is
the approximation method (linear interpolation, Chebyshev polynomial basis/interpolation, mono-
mial basis). Seetable 3for details. Solving for the policy functions requires calculating the value
of these functions off the nodes (i.e., interpolation between nodes and extrapolation outside the
grid), which is inaccurate when there is curvature in the policy functions and the grids on the
state variables are sparse. Thus, orthogonal bases, such asChebyshev polynomials, often yield
more accurate solutions, but at a greater computational cost, which is increasing in the order of the
polynomial used to approximate the policy functions.

4.1 LEAST SQUARES PROJECTION The following algorithm implements the least squares pro-
jection method, given a specified basis. The basis is evaluated at a particular state and forms the
dependent variables used to obtain the least squares estimates. LetX denote the basis evaluated
using the original discretized state space andXt the basis evaluated at the timet state.

We obtain an approximation of the policy functions,Λ̂t (anM-by-p matrix whereM is the
number of nodes andp the number of policy functions), using the least-squares estimates,̂ηt.9 We
useΛ̂t to calculate the updated state variables, which formsXt. Λ̂t+1 is a function ofXt and is used
to calculate thet + 1 variables necessary to evaluate the terms within the expectation operators.
The expectations are evaluated using Gauss-Hermite quadrature.

Once the expectations are evaluated, we calculateΛt as implied by the equilibrium system
of equations. GivenΛt, new estimates of the coefficients are obtained using the least squares
estimator,η̂t′ . The algorithm iterates on these estimates. Since this method minimizes the sum
of the squared residuals, the approximation error of the policy functions is minimized for a given
basis. The least-squares estimates of the coefficients are updated using a convex combination of

9We obtain the initial least-squares estimates from the log-linear solution.
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the old and new estimates,η̂t+1 = λη̂t′ + (1 − λ)η̂t for λ ∈ [0, 1], which helps maintain stability,
especially at the beginning of the algorithm. This iterative process continues until|η̂t′ − η̂t| reaches
a pre-specified tolerance criterion.

4.1.1 MONOMIAL BASIS Following Heer and Maussner(2005), we choose the set of mono-
mials corresponding to annth order Taylor approximation of the policy function. The set of basis
functions is given by

Ps
n =

{

(
xk1
1 · · ·xks

s

)

∣
∣
∣
∣
∣

s∑

i=1

ki = j, ki ≥ 0, j = 0, 1, . . . , p

}

,

wheres is the number of state variables. The monomials are evaluated at each of theM nodes in
the discretized state-space and stored column-wise inX. The approximated policy functions are
given byΛ̂t = Xη̂t. New estimates of the coefficients are obtained every iteration using the least
squares estimator,̂ηt′ = (X ′X)−1X ′Λt.

4.1.2 CHEBYSHEV POLYNOMIAL BASIS As an alternative to the monomial basis, we ap-
proximate the policy functions using a Chebyshev polynomial basis. The first two Chebyshev
polynomials areT0(x) = 1 andT1(x) = x. The remaining polynomials are given by the re-
cursive formulation,Tj(x) = 2xTj−1(x) − Tj−2(x), for j ≥ 2. We use the MATLAB function
ChebyshevCoeff.m, written by David Terr, to obtain the coefficients for each polynomial. The
MATLAB function chebpoly.m outputs these coefficients and the corresponding powers ofx,
which allows us to construct the polynomials with element-by-element matrix operations.

chebpoly.m also outputs the corresponding zeros of the Chebyshev polynomials. Discretiz-
ing the state-space so the nodes coincide with the zeros of the polynomials minimizes the error of
the approximating function. The zeros of the Chebyshev polynomials are given by

x̄ki ≡ cos

(
2ki − 1

2mi
π

)

,

whereki = 1, . . . , mi andi = 1, . . . , s. Choosemi as the number of points in theith dimension of
the state space. Sincēxki ∈ [−1, 1], transform the grid to the interval[ai, bi] by applying

z̄ki ≡
x̄ki(bi − ai)

2
+ ai.

The next step is to estimate the least squares coefficients ofthe approximating function.
Define Λ̄k1,...,ks as the value of the approximating function,Λ̂(z̄k1, . . . , z̄ks). We seekηj1,...,js

that minimizes

m1∑

k1=1

· · ·
ms∑

ks=1

[

Λ̄k1,...,ks −
n1∑

j1=0

· · ·
ns∑

js=0

ηj1,...,jsTj1(x̄k1) · · ·Tjs(x̄ks)

]2

for ni ≤ mi. This yields the least-squares estimator

η̂j1,...,js =
1 + 1(j1 > 0)

m1

· · · 1 + 1(js > 0)

ms

m1∑

k1=1

· · ·
ms∑

ks=1

Λ̄k1,...,ksTj1(x̄k1) · · ·Tjs(x̄ks)
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and is the output of the MEX functionFchebweights*. The approximating function is evalu-
ated in the MEX functionFallcheb* according to

Λ̂(z1, . . . , zs) =
n1∑

j1=0

· · ·
ns∑

js=0

η̂j1,...,jsTj1(x1) · · ·Tjs(xs),

wherexi = 2(zi − ai)/(bi − ai)− 1.
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Figure 1: RBC model consumption Euler equation errors in base 10 logarithms. FM: Fixed point iteration with a
monomial basis, TL: Time iteration with linear interpolation, FC: Fixed point iteration with Chebyshev polynomial
basis, TC: Time iteration with a Chebyshev interpolation. FC and TC are based on a 4th order Chebyshev polynomial.

4.2 EULER EQUATION ERRORS Figure 1compares errors for the consumption Euler equation
across the log-linear, TL, TC, FM and FC solution methods. For ease of presentation, we show
absolute errors in base 10 logarithms. This means that if theEuler equation error is−4, the
household makes an error of one consumption good for every 10,000 units of consumption goods.
In general, our findings are in line withAruoba et al.(2006).

The log-linear method (circle markers) is the least accurate. FM (dashed line) relies on an
arbitrarily-specified basis and is the least computationally intensive global approximation method.
To capture nonlinearities in the policy functions, we writethe approximating functions asΛ = Xη,
whereΛ = ct is the sole policy function,X = [1 k z kz k2 z2] is a collection of basis functions, and
η is a6× 1 matrix of coefficients. We considered several alternative collections of basis functions
with higher-order terms, but found that they had little effect on the magnitude of the errors. We
find that FM is as much as two orders of magnitude more accuratethan the log-linear method.

Like the log-linear method, TL (solid line) solves for alocal approximation of the policy func-
tions. Thus, the errors can meet any user-specified tolerance criterion on each node, but lose
accuracy when policy function values are interpolated between nodes or extrapolated outside the
state space. The key difference from the log-linear method is that TL outperforms FM off the grid
for the productivity shock, improving the accuracy of the consumption Euler equation by as much
as two orders of magnitude. FC and TC are even more accurate than TL. Regardless of the iteration
technique, using Chebyshev polynomials to approximate thepolicy functions consistently satisfies
the consumption Euler equation given any user-specified tolerance level—both on and off the grid.
However, this result is sensitive to the order of the polynomial. The errors with TC and FC are
based on a 4th-order Chebyshev polynomial. We found that lower order polynomials significantly
reduce accuracy, but higher order polynomials only marginally improve accuracy.
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The NK model contains five state variables—lagged real debt,real money balances, the nomi-
nal interest rate, capital, and the fiscal policy shock—and three policy functions—labor, inflation,
and capital. Infigure 2, we report errors for the consumption Euler equation, the firm pricing equa-
tion, and the bond Euler equation. For ease of presentation,we restrict our attention to errors as
a function of capital and the tax shock.10 Although this model is more complicated than the RBC
model, the ordering of the Euler equation errors remains unchanged. Off the grid, TL consistently
performs two orders of magnitude better than log-linear methods. TC and FC further increases
accuracy, reducing Euler equation errors by an additional two orders of magnitude.
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Figure 2: NK model Euler equation errors in base 10 logarithms. FM: Fixed point iteration with a monomial basis,
TL: Time iteration with linear interpolation, FC: Fixed point iteration with a Chebyshev polynomial basis, TC: Time
iteration with Chebyshev interpolation. FC and TC are basedon a 4th order Chebyshev polynomial.

10Alternative state variables do not impact the ordering of the Euler equation errors. We decided not to average
across the linear state to obtain a better comparison between the linear and nonlinear solution techniques.
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RBC Model NK Model

Method No MEX Basis in MEX No MEX Basis in MEX
FM 0.5 N/A 0.9 N/A
FC 27.2 6.5 302.0 31.2
TL 27.3 20.6 37.8 22.5
TC 45.9 23.9 508.2 60.8

Table 4: RBC and NK model solution times across the alternative solution methods (in seconds). The RBC solution
is based on a state space of 1,681 nodes (41 points onkt−1, 41 points onzt) and 10 realizations ofεz,t+1. The NK
solution is based on a state space of 2,401 nodes (7 points onat−1, bt−1, kt−1, andετ,t) and 10 realizations ofετ,t+1.
FC and TC are based on a 4th order Chebyshev polynomial. The routines were computed with an Intel Xeon X5690
6-core processor (3.47GHz) operating 64-bit Windows 7. All6 locally available processors were used in every speed
test. FM: Fixed point iteration with a monomial basis, TL: Time iteration with linear interpolation, FC: Fixed point
iteration with a Chebyshev polynomial basis, TC: Time iteration with Chebyshev interpolation.

4.3 SPEED COMPARISONS Table 4reports solution times for the RBC and NK models across
the alternative solution methods. Linear methods are fast and easy to apply, and there are numer-
ous toolboxes for obtaining solutions. However, these methods are less accurate and unable to
handle intrinsic nonlinearities or capture potentially important expectational effects (for example,
in models with Markov-switching policy parameters or binding constraints.)

Figures 1and2 indicate that TC and FC offer a clear increase in accuracy (asmuch as two
orders of magnitude), buttable 4shows that greater accuracy comes at the expense of a greater
computational burden in terms of running time and implementation. Chebyshev interpolation is
more intensive than linear interpolation, which MEX alleviates. The MEX implementation of FC
is relatively quick and is four orders of magnitude more accurate than FM, but the speeds of both
FC and TC relative to TL exponentially decrease for larger models and higher order Chebyshev
polynomials. For the RBC and NK models, fixed-point iteration is faster than time iteration. How-
ever, fixed-point iteration solution times depend on the policy function update weight,λ. These
simple models permitλ = 1, but complex models may require a lowerλ to maintain stability of the
algorithm. Time iteration does not suffer from this instability since the nonlinear solver minimizes
error each iteration. Our findings suggest that TL provides the best balance between speed and
accuracy, offering a 41 percent (63 percent) speed decreasefrom TC in the RBC (NK) model with
a modest reduction in accuracy. TL is also more robust than its alternatives, since it is stable in
every macroeconomic model and calibration we have tested.

4.4 MAXIMUM RESIDUAL AND EULER EQUATION ERRORS INTEGRAL Following Aruoba
et al.(2006) andCaldara et al.(2012), in tables 5we provide the integral of the Euler equation er-
rors and the maximum residual for each solution method. These statistics provide complementary
measures of accuracy and are defined over a square that is±10 percent on either side of steady
state capital and productivity in the RBC model and±5 percent on either side of steady state cap-
ital and the tax shock in the NK model. We simulate each model for 100,000 periods from its
stochastic steady state and create a distribution by counting the number of realizations in evenly
spaced intervals and dividing by the simulation length.

The maximum Euler equation errors correspond to the largesterrors plotted infigures 1(RBC
model) and2 (NK model). Once again, we report base 10 logarithms of the errors. There are two
distinct groups. Listed from least to most accurate, the log-linear method, FM, and TL have the
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Method Capital Productivity

FM -8.4 (-4.9) -8.7 (-5.1)
TL -8.0 (-5.2) -8.8 (-5.1)
Log-linear -7.2 (-3.8) -8.4 (-3.2)
FC -10.3 (-8.2) -11.3 (-7.9)
TC -10.5 (-8.2) -11.3 (-7.9)

(a) RBC model

Capital Tax Shock

Method Capital FOC Firm Pricing Bond FOC Capital FOC Firm Pricing Bond FOC

FM -9.5 (-5.0) -8.4 (-3.9) -9.8 (-5.1) -9.4 (-5.3) -8.3 (-4.5) -9.6 (-5.3)
TL -14.1 (-5.7) -14.0 (-4.8) -14.1 (-5.4) -11.1 (-7.9) -8.4 (-5.2) -10.5 (-7.3)
Log-linear -11.4 (-3.5) -10.2 (-2.2) -10.7 (-3.4) -11.0 (-4.9) -9.6 (-3.7) -10.6 (-5.0)
FC -12.4 (-8.0) -11.4 (-7.0) -12.4 (-8.2) -12.2 (-9.4) -11.2(-8.4) -12.3 (-9.4)
TC -13.0 (-8.0) -12.1 (-7.0) -14.8 (-8.2) -12.8 (-9.8) -11.9(-8.7) -14.1 (-10.1)

(b) NK model

Table 5: Euler equation error integrals (maximums). Valuesin base 10 logarithms. FM: Fixed point iteration with a
monomial basis, TL: Time iteration with linear interpolation, FC: Fixed point iteration with a Chebyshev polynomial
basis, TC: Time iteration with Chebyshev interpolation. FCand TC are based on a 4th order Chebyshev polynomial.

largest errors. FC and TC perform equally well and provide a clear improvement in accuracy.
The integrals take into consideration the frequency at which the errors occur and provide mea-

sures of the welfare loss associated with a particular solution method. Compared to the maximum
residual, the relative accuracy of the various methods doesnot change. These integrals highlight
a smaller difference in accuracy between TL and FM along the simulated path than suggested by
the maximum error over the entire interval. However, FC and TC still show a clear comparative
advantage in accuracy with at least a 4th order Chebyshev polynomial.

5 NEW KEYNESIAN MODEL WITH RECURSIVEPREFERENCES

This section considers a cashless version of the NK model laid out in sectionsection 3.2, but where
households have preferences that distinguish between riskaversion and intertemporal substitution.
This demonstrates the flexibility of the time iteration/linear interpolation algorithm and shows that
our suite can be used to study asset pricing facts. FollowingGiovannini and Weil(1989) and
Epstein and Zin(1989, 1991), we adopt a recursive structure for intertemporal utilitygiven by

U(ut, EtU
1−η
t+1 ) =

{

(1− β)u
(1−η)/χ
t + β(EtU

1−η
t+1 )

1/χ
}χ/(1−η)

, (1)

whereη determines relative risk aversion,σ is the elasticity of intertemporal substitution, and
χ = (1− η)/[1− σ−1]. Time-t utility is given by

ut ≡ u(ct, nt) = cνt (1− nt)
1−ν , ν ∈ (0, 1). (2)

The household’s choices are constrained by

ct + it + bt = (1− τt)(wtnt + rkt kt−1) + rt−1bt−1/πt + dt, (3)

kt = (1− δ)kt−1 + it. (4)
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Given prices, the representative household chooses a sequence of quantities,{ct, nt, Bt, kt}∞t=0, to
maximize (1) subject to (2)-(4). Optimality yields the following first order conditions

(1− τt)wt =
1− ν

ν

ct
1− nt

,

1 = rtEt{qt,t+1/πt+1},
1 = Et{qt,t+1[(1− τt+1)r

k
t+1 + (1− δ)]},

where the stochastic discount factor,q, is given by

qt,t+1 = β

(
ut+1

ut

) 1−η
χ ct

ct+1

(

V 1−η
t+1

EtV
1−η
t+1

)1− 1

χ

and, at optimum, the value function,V , can be written

Vt =
{

(1− β)u
(1−η)/χ
t + β[EtV

1−η
t+1 ]1/χ

}χ/(1−η)

.

Whenη = 1/σ, the value function,Vt, disappears from the first order conditions. Moreover, the
constant of relative risk aversion,η, only alters the dynamics of higher order approximations, since,
to a first-order, the term(V 1−η

t+1 /EtV
1−η
t+1 )1−1/χ cancels out in expectation. The firm’s problem and

the policy specification are identical tosection 3.2.
The model contains four state variables—lagged real debt, the nominal interest rate, capital,

and the fiscal policy shock—and four policy functions—labor, inflation, capital, and the time-t
value of the optimal value function.Figure 3reports errors for the consumption Euler equation,
the bond Euler equation, the firm pricing equation, and the household’s optimal value function.
Once again, we restrict our attention to errors as a functionof capital and the tax shock and report
them in base 10 logarithms. Our findings are in line withCaldara et al.(2012).

Outside of a close neighborhood of steady state, the log-linear method continues to perform at
least two orders of magnitude worse than its nearest nonlinear competitor. However, the accuracy
of the FM solution technique increases relative to the canonical NK model, performing equally as
well as the TL solution method. TC and FC remain the most accurate, improving accuracy by an
additional two orders of magnitude over FM and TL.

6 NEW KEYNESIAN MODEL WITH REGIME SWITCHING

This section adds monetary and fiscal policy switching to thecanonical NK model, but where the
fiscal authority only has access to lump-sum taxes to isolatethe expectational effects of switching
regimes. Unlike the previous examples, the discontinuity in the monetary and fiscal policy rule
implies that linear interpolation is more accurate that Chebyshev approximation, which cannot
accurately approximate the policy functions with a low order polynomial. The policy rules are

rt = r̄(πt/π
∗)φ(st) exp(εr,t)

τt = τ̄ (bt−1/b
∗)γ(st) exp(ετ,t),
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Figure 3: NK model with recursive preferences Euler equation errors in base 10 logarithms. FM: Fixed point itera-
tion with a monomial basis, TL: Time iteration with linear interpolation, FC: Fixed point iteration with Chebyshev
interpolation, TC: Time iteration with a Chebyshev polynomial basis.

18



RICHTER, THROCKMORTON, & WALKER : POLICY FUNCTION ITERATION

wherest ∈ {1, 2} and the regime-dependent reaction coefficients are given by

φ(st) =

{

φ for st = 1,

0 for st = 2,
γ(st) =

{

γ for st = 1,

0 for st = 2.

The policy mix evolves according to a first-order two-state Markov chain given by
[
Pr[st = 1|st−1 = 1] Pr[st = 2|st−1 = 1]
Pr[st = 2|st−1 = 1] Pr[st = 2|st−1 = 2]

]

=

[
p11 p12
p21 p22

]

.

FollowingLeeper(1991), we label state 1 as active monetary and passive fiscal policy (AM/PF)
and state 2 as passive monetary and active fiscal policy (PM/AF).

6.1 SOLUTION TECHNIQUE AND EULER EQUATION ERRORS The two policy regimes imply
very different linear solutions. Thus, using the linear solution in only one of the states does not
provide a good initial conjecture for both policy states. Instead, we use a linear combination of the
linear solution in each state with weights equal to the transition probabilities to form a guess for the
full nonlinear model. Although this is not required in all regime switching models, we found this is
the best approach because it approximates the expectational effect of switching between regimes.

We interpolate/extrapolate for every permutation of the discretized continuous stochastic vari-
ables,ετ,t andεr,t. We facilitate this with a nested loop inallterp* that outputs a matrix of all
possible realizations of the policy variables at timet+ 1, where the rows correspond to the values
of ετ,t and the columns correspond to the values ofεr,t.

To evaluate expectations, we perform numerical integration using a two-step process that first
applies the Trapezoid rule to each continuous stochastic variable and subsequently applies Markov-
Chain integration to the discrete stochastic variable. To integrate across the continuous stochastic
variables, first replicate the vector ofετ,t weights across them realizations ofεr,t to create an
n × m weighting matrix. Then weight each expectation and apply the Trapezoid rule across the
ετ,t-dimension (the rows) to collapse each expectation to a vector of realizations. Finally, weight
each of these outcomes using theεr,t weights and once again apply the Trapezoid rule. This
step produces expectations conditional on the realizations of the discrete stochastic variable,st.
To integrate across each of these outcomes, simply weight each conditional expectation by its
likelihood and sum across all realizations (see the online appendix for details). With three or more
continuous stochastic variables, the product and trapezoid rules become exponentially costly to
evaluate. In this case, we recommend using monomial rules [Judd(1998); Stroud(1971)].

Figure 4compares the accuracy of the TM, TL, and TC solutions to the New Keynesian model
with switching in the policy parameters.11 We specifyp11 = p22 = 0.8. We plot the residuals
for the AM/PF (st = 1) and PM/AF (st = 2) regimes, which are roughly the same. With a 4th-
order polynomial, TC is less accurate than TL. This is in sharp contrast with our findings in the
non-switching NK model, where Chebyshev interpolation is consistently more accurate than linear
interpolation. This is because Chebyshev interpolation isa global method and cannot capture the
discontinuity as well as linear interpolation, which is a local method.

11We only provide the consumption Euler equation errors, since the firm pricing and bond Euler equation errors
imply the same qualitative results. The other errrors are available from the authors upon request.

19



RICHTER, THROCKMORTON, & WALKER : POLICY FUNCTION ITERATION

−5 −2.5 0 2.5 5

−12

−10

−8

−6

−4

Capital
−5 −2.5 0 2.5 5

−12

−10

−8

−6

−4

Tax Shock

 

 

TL TC TM

(a) Active Monetary/Passive Fiscal (st = 1)

−5 −2.5 0 2.5 5

−12

−10

−8

−6

−4

−2

Capital
−5 −2.5 0 2.5 5

−12

−10

−8

−6

−4

−2

Tax Shock

(b) Passive Monetary/Active Fiscal (st = 2)

Figure 4: NK model with regime switching in the policy parameters consumption Euler equation errors in base 10
logarithms. TL: Time iteration with linear interpolation,TC: Time iteration with Chebyshev interpolation, TM: Time
iteration with a monomial basis. TC is based on a 4th order Chebyshev polynomial andp11 = p22 = 0.8.
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Figure 5: Policy functions for the NK model with regime switching in the policy parameters, based on a time itera-
tion/linear interpolation technique (TL).λ measures the average duration of time spent in the active monetary/passive
tax regime (AM/PF,st = 1) in the ergodic distribution.
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6.2 EXPECTATIONAL EFFECTS The effect of monetary and fiscal policy shocks is dependent
on the probabilities in the transition matrix. The average duration of time spent in the active
monetary/passive tax regime (AM/PF,st = 1) in the ergodic distribution is given by

ξ =
1− p22

2− p11 − p22
.

Following Chung et al.(2007), figure 5 shows how the policy functions in the AM/PF regime
change asξ declines, which demonstrates the nonlinearities that the TL solution method captures.
In the passive monetary/active fiscal regime (PM/AF,st = 2), a tax shock elicits no response from
the fiscal authority and the price level adjusts to stabilizedebt. Whenξ = 1, there is no chance of
moving to the PM/AF regime. Thus, Ricardian equivalence holds and tax shock have no effect on
the policy functions. As the expected duration of time spentin the PM/AF regime rises, negative
tax shocks increase inflation, which, with costly price adjustments, lowers output and consumption.

TL is particularly attractive for solving models with discrete random variables. Asfigure 5
illustrates, this method captures the curvature in the policy functions, even with linear interpolation.
Spectral methods increase accuracy, but rely on smoothnessin the policy functions and are far less
stable and less accurate when applied to models with regime-switching. We were unable to achieve
convergence using TC whenξ < 0.5 or when the polynomial order exceeds 4.

7 ZERO LOWER BOUND ON THE NOMINAL INTERESTRATE

Most of the existing literature that studies the zero lower bound (ZLB) uses log-linearized New
Keynesian models.12 However, using log-linearized models creates the potential for large approx-
imation errors [Braun et al.(2012); Fernández-Villaverde et al.(2012)]. This section shows that
time iteration with linear interpolation is a stable and accurate way to solve models with an oc-
casionally binding constraint. Chebyshev interpolation is far less stable and less accurate, since it
cannot accurately capture the kink in the policy functions that the ZLB constraint imposes.

We augment the simple Taylor rule in the New Keyesian model toinclude an automatic stabi-
lizer component, which increases the frequency of ZLB events. Given the inequality constraint on
the nominal interest rate, the monetary policy rule becomes

rt = max{1, r̄(πt/π
∗)φπ(yt/ȳ)

φy}. (5)

To simplify the analysis, we assume the economy is at its cashless limit and the government bal-
ances its budget each period by levying lump-sum taxes (government debt is in zero net supply).
The economy is subject to demand and supply shocks. The demand shock propagates through the
discount factor and productivity is a proxy for the supply shock. They evolve according to

βt = β(βt−1/β)
ρβ exp(εβ,t),

zt = z̄(zt−1/z̄)
ρz exp(εz,t),

whereεx ∼ N(0, σ2
x), x ∈ {β, z}.

Richter and Throckmorton(2013) show that the calibration of the model (including the pa-
rameters of the stochastic processes) impacts determinacy, since the boundary of the determinacy

12Recent papers that solve the nonlinear model includeAruoba and Schorfheide(2013); Basu and Bundick(2012);
Fernández-Villaverde et al.(2012); Gavin et al.(2013); Gust et al.(2012); Judd et al.(2011); Mertens and Ravn(2013).
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region imposes a clear tradeoff between the expected frequency and average duration of episodes
at the ZLB. We calibrate the model to ensure a determinate solution. Unless specified, the param-
eters are identical tosection 3.2.1. Given a quarterly calibration,β = 0.99 (1% real interest rate),
δ = 0.025, andϕ = 77.67 (75 percent of firms cannot adjust prices each period). The productivity
and discount factor processes are semi-persistent with autoregressive coefficients,ρz = ρβ = 0.75.
The shocks are normally distributed with mean zero and standard deviationsσz = 0.005 and
σβ = 0.0025. The monetary authority response coefficients,φπ andφy, are set to1.5 and0.1. We
normalize steady state output to 1 and solve for the implied steady state productivity level.

Although the ZLB imposes a kink in the policy functions, the linear solution to the NK model
withouta ZLB constraint typically provides a good initial conjecture for the constrained nonlinear
model. The only difference from the solution procedure described insection 3.2.1is that we set
the gross nominal interest rate equal to1 on any node where the Taylor rule impliesr < 1. The
nonlinear solver searches for policy function values on each node that satisfy the ZLB constraint.

Both the linear and nonlinear models contain a unique set of state variables—capital, produc-
tivity, and the discount factor. We discretize each state variable with 41 points, which implies
68,921 nodes. Once again, the number of grid points is subjective, but denser grids are required
to accurately locate the kinks in the policy functions. There is still flexibility when choosing the
policy functions. We specify policies over inflation (required), labor, and capital.

7.1 ZLB RESULTS We solve the constrained nonlinear model using TL and TC. Variants of
both methods have been recently used in the literature, although TC is far more common. TL is
just as flexible as the model without a ZLB. It converges for a broad range of model parameteri-
zations and grid specifications. Although TC is stable and accurate when the ZLB does not bind,
it is very unstable when the ZLB binds on even a small percentage of the state space, since it is
impossible for the algorithm to accurately locate the kinksin the policy functions with a continu-
ous approximation. Even with a high order Chebyshev polynomial, TC did not converge for most
parameterizations and grid specifications. In cases where TC did converge, the solutions implied
by the TL and TC algorithms are very different. With a 5th order Chebyshev polynomial, the ZLB
binds on 6.5 percent of the nodes in the state space, whereas the ZLB binds on only 2.1 percent of
the nodes with TL. Wider bounds on any of the state variables will increase these percentages.

Figure 6shows a productivity-discount rate cross-section of the state space. We fix capital at 6
percent above steady state to concentrate on a region of the state space where the ZLB occasionally
binds and there is a kink in the policy functions. Both solution methods imply that the ZLB binds
in the upper right-hand corner of the state space, since higher productivity (positive supply shock)
and more patient households (negative demand shock) decrease inflation and drive the nominal
interest rate to its ZLB.13 This figure makes clear that there are stark differences between the two
solution methods. The TL solution implies that the ZLB bindson only 2 percent of the nodes
in this cross section (star markers), while the TC solution implies that nearly 30 percent of the
nodes bind (square markers). These difference have important implications for the conditional and
unconditional probabilities of hitting and staying at the ZLB.

Figure 7reports errors for the consumption Euler equation, firm pricing equation, and bond
Euler equation as a function of the capital, productivity, and the discount factor states in base 10
logarithms. We fix capital, productivity, and the discount factor at6, 7, and1.5 percent above their

13For a more detailed discussion on how productivity and discount factor shocks impact the model solutions and
dynamics in models with and without capital seeGavin et al.(2013).
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Figure 6: Productivity-discount factor cross-section of the state space where capital is 6 percent above steady state.

steady state values. The darker (entire) shaded region indicates where the ZLB binds when the
model is solved with TL (TC). Both methods are less accurate when the ZLB binds. However,
TL outperforms TC with a 5th order Chebyshev polynomial regardless of whether the ZLB binds,
which is consistent with the results insection 6. Even in alternative cross-sections of the state space
where the ZLB never binds, TL is always more accurate than TC.This is due to the kinks in the
policy functions, which make it very difficult for a global approximation method, such as TC, to
find a polynomial that well-approximates regions of the state space where the ZLB binds and does
not bind. In the canonical models described above, TC and TL presented a clear tradeoff between
accuracy and speed. In models with an inherent nonlinearity, such as those with occasionally
binding constraints or Markov switching, TL is more accurate, faster, and more stable.

Accurately locating the kink of the policy functions has important implications for economic
dynamics.Figure 8shows the consumption and labor policy functions based on the TL (solid line)
and TC (dashed line) solution methods. Once again, we fix capital at 6 percent above steady state.
The inequality constraint induces a kink in the policy functions that does not exist in other NK
models, even when they contain real frictions. As the economy moves to higher productivity and
discount factor states where the ZLB does not bind, output rises and inflation falls as firms revise
prices downward. In states where the ZLB binds, the real interest rate rises sharply, which reduces
demand. This causes output and inflation to fall. Although both solution method produces similar
qualitative dynamics in states away from and at the ZLB, the quantitative dynamics of the model
are drastically different. This figure makes clear that the TC solution method has trouble locating
the kink in the policy functions, as the policy functions oscillate across the state space.

A byproduct of inaccurately capturing the kinks in the policy functions is that extrapolation will
be very inaccurate.Figure 9demonstrates that a global approximation with Chebyshev polynomi-
als will lead inaccurate expectations. The vertical dashedlines are the bounds of the discretized
state space. Values of the approximating functions that lieoutside these bounds are extrapolated,
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Figure 7: NK ZLB model Euler equation errors in base 10 logarithms. Unless specified, capital, productivity, and the
discount factor are fixed at 6, 7, and 1.5 percent above steadystate. TL: Time iteration with linear interpolation, TC:
Time iteration with Chebyshev interpolation. TC is based ona 5th order Chebyshev polynomial. The dark (entire)
shaded region indicates where the ZLB binds when the model issolved with TL (TC).
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and will enter the expectation operator. If future variables are computed using extrapolated values,
then significant error enters the expectation operators in the equilibrium system. This additional
error is another cause of inaccuracy of Chebyshev approximation on the discretized state space.

8 CONCLUSION

Policy function iteration methods have long been known as a reliable way to solve dynamic mod-
els nonlinearly. They are particularly useful for studyingthe economic consequences of a wide
variety of potential policy outcomes. Despite the considerable benefits of this algorithm, it suffers
from several drawbacks. The most prohibitive feature of this algorithm is its reliance on grid-based
techniques, which exponentially increases the size of the problem with the number of state vari-
ables and the number of continuous stochastic components. Perturbation solution methods are far
less computationally expensive and are more appropriate for models that do not contain recurring
regime change or equilibrium paths that deviate far from thedeterministic steady state.

Another concern is whether these solution methods consistently satisfy transversality condi-
tions, since it only iterates on the policy functions and hasno formal mechanism for imposing
these restrictions. As a safeguard, however, it is easy to simulate a model for thousands of peri-
ods and check that its average asset levels (e.g., capital, bonds,etc.) are convergent. Moreover,
simulated paths in models that explicitly violate the transversality condition will typically diverge
even if the algorithm converges. Although these exercises do not provide proof, they do provide
reasonable confidence that transversaility conditions aremet.

Lastly, in models that contain significant curvature in the policy functions, itcan be difficult
to obtain initial conjectures. The best starting point to generate a guess for the nonlinear model is
always the solution to the linearized model. In almost all cases, the linear solution provides a good
enough guess ensure that the policy functions converge in the nonlinear model. In cases where it
is not, we recommend two potential solutions: 1. use the linear solution as an initial conjecture
for a variant of the nonlinear model, which may provide a better guess for the nonlinear model
of interest, or 2. solve the model with a parameterization that induces less curvature in the policy
function and slowly iterate on the parameter of interest.

Any numerical algorithm imposes direct costs onto the programmer. We reduce the costs as-
sociated with policy function iteration methods by providing a user-friendly suite of MATLAB
functions that introduce multi-core processing and Fortran via MATLAB’s executable function.
Within the class of policy function iteration methods, we advocate using time iteration with linear
interpolation. We apply this method to conventional RBC andNK models and carefully document
how to chose policy functions, discretize the state space, interpolate/extrapolate future values, and
perform numerical integration. The use of multi-core processing alongside optimized code that
takes advantage of Fortran’s comparative advantage at evaluating loops decreases solutions times
by a factor of 8 in the RBC model and a factor of 24 in the NK model. Moreover, comparing time
iteration with linear interpolation to alternative solution techniques demonstrates it is accurate, able
to capture important nonlinearities, and robust to models with discontinuities.
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A ONLINE APPENDIX (NOT FORPUBLICATION )

A.1 BRIEF REVIEW OF THE THEORY This section briefly reviews the theory behind monotone
operators as applied to DSGE models, using the results ofGreenwood and Huffman(1995) (GH,
hereafter). We do not convey any new theoretical results butsimply demonstrate how the monotone
map can be used to prove existence and uniqueness of an equilibrium. We follow GH closely
because they proved existence of equilibrium in a very general setup. Moreover, as advocated
by Datta et al.(2002), Datta et al.(2005), Mirman et al.(2008), the theoretical properties of the
monotone map can be extended to more complex setups. Proofs of existence using monotone
operators are constructive in the sense that the numerical algorithm is a byproduct of the proof,
which only adds to the appeal of policy function iteration algorithm methods.

A.1.1 ECONOMIC ENVIRONMENT The economic environment is standard. The model consists
of a continuum of measure one identical agents with preferences

E0

[ ∞∑

t=0

βtU(ct)

]

,

where the momentary utility function is assumed to be strictly increasing, strictly concave and
twice differentiable, withU ′(0) = ∞. The production function is given by

yt = F (kt, Kt, ηt),

where output,yt, is produced with the individual agent’s capital stock,kt, the aggregate capital
stock,Kt, and is subject to a random productivity shock,ηt. The productivity shock is assumed to
be drawn from a Markov distribution function,G(ηt+1|ηt), with bounded support. The production
function is assumed to satisfy the Inada conditions,limK→0F1(K,K, η) = ∞, be strictly increas-
ing and strictly concave in its first argument, and twice differentiable in its first two arguments.
Moreover, GH also impose the following somewhat nonstandard assumptions:

1. ∃K̄ ∋ F (K̄, K̄, η) ≤ K̄

2. ∀K ∈ (0, K̄], F1(K,K, η) + F2(K,K, η) ≥ 0 and F11(K,K, η) + F21(K,K, η) < 0

Assumption 1 places an upper bound on the level of output. Assumption 2 requires that the sum of
the marginal products of the individual and aggregate capital stock be positive (along the equilib-
rium pathk = K). As noted by GH, these assumptions are innocuous and hold for a wide range
of economies.

The agent’s dynamic programming problem is given by

V (k,K, η) = max
k′

{

U(F (k,K, η)− k′) + β

∫

V (k′, K ′, η′)dG(η′|η)
}

, (6)

where aggregate capital,K, has the following law of motionK ′ = Q(K, η). Let the optimal policy
function associated with (6) be given byk′ = q(k,K, η). By standard arguments, one can derive
the corresponding Euler equation

U ′(F (k,K, η)− k′) = β

∫

U ′(F (k′, K ′, η′)− k′′)F1(k
′, K ′, η′)dG(η′|η)
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A stationary equilibrium is a pair of functions,k′ = q(k,K, η) andK ′ = Q(k, η), that satisfy
optimality (i.e., solves (6)) and consistency,q(K,K, η) = Q(K, η). We are now able to state the
main proposition of GH.

Proposition 1 (GH, pg. 615). There exists a nontrivial stationary equilibrium for the economy
described above.

The method of proof in GH follows that of Coleman (1991) and is our primary interest because
it uses Euler equation iteration and properties of monotoneoperators. For these reasons we repeat
the proof here. Let the sequence of aggregate laws of motion,{Hj(K, η)}∞j=0, evolve according to
H0(K, η) ≡ 0, and letHj+1(K, η) for j ≥ 0 be defined as the solution forx in the Euler equation

U ′(F (K,K, η)− x) = β

∫

U ′(F (x, x, η′)−Hj(x, η′))F1(x, x, η
′)dG(η′|η). (7)

(7) defines a sequential operator mappingHj into Hj+1. GH show that the left-hand side of (7)
is strictly increasing inx, while the right-hand side is strictly decreasing inx.14 This monotonic
mapping along with assumptions 1 and 2 imply the existence ofa solution to (7).

The intuition behind the result is straightforward: the sequence{Hj(K, η)}∞j=0 produces a
monotonically increasing sequence for the aggregate capital stock, which is bounded above by
K̄. GH prove that the pointwise limit of this sequence of functions is the aggregate policy func-
tion limj→∞Hj(K, η) = Q(K, η) and that the aggregate law of motion is nondegenerate (i.e.,a
degenerate law of motion is one that satisfiesQ(K, η) = F (K,K, η) for all K andη).

This mapping serves as the basis for numerical algorithms discussed in this paper, among many
others [Coleman (1991); Baxter(1991); Baxter et al.(1990); Davig (2004); Davig et al.(2010); Bi
(2012)]. While the purpose of this paper is to provide resources toreduce the cost of implementing
the computational algorithm down, the theoretical aspect of the monotone map is very appealing.

A.2 L INEAR INTERPOLATION/EXTRAPOLATION To get an idea of how linear interpolation
and extrapolation works, consider the following example with two state variables,x1 andx2. The
nearest perimeter around the point,(x′

1, x
′

2), is formed by the four points(x1,i, x2,i), (x1,i, x2,i+1),
(x1,i+1, x2,i), and(x1,i+1, x2,i+1), wherei signifies the position on the grid. We want the policy
function value,f(x′

1, x
′

2), but we only have policy function values for the four nearestpoints on
the grid (off the grid, we extrapolate using the nearest fourpoints that form a square on the edge
of the state space). First, holdingx2 fixed, interpolate/exptrapolate in thex1 direction to obtain

f(x′

1, x2,i) = f(x1,i, x2,i) + (x′

1 − x1,i)
f(x1,i+1, x2,i)− f(x1,i, x2,i)

x1,i+1 − x1,i

=
x1,i+1 − x′

1

x1,i+1 − x1,i
f(x1,i, x2,i) +

x′

1 − x1,i

x1,i+1 − x1,i
f(x1,i+1, x2,i) (8)

f(x′

1, x2,i+1) =
x1,i+1 − x′

1

x1,i+1 − x1,i
︸ ︷︷ ︸

ω1,i

f(x1,i, x2,i+1) +
x′

1 − x1,i

x1,i+1 − x1,i
︸ ︷︷ ︸

ω1,i+1

f(x1,i+1, x2,i+1). (9)

14In order to prove the right-hand side is strictly decreasing, the additional assumption,0 ≤ ∂Hj(K, η)/∂K ≤
[F1(K,K, η) + F2(K,K, η)], needs to be imposed.
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Then interpolate/exptrapolate in thex2 direction to obtain

f(x′

1, x
′

2) = f(x′

1, x2,i) + (x′

2 − x2,i)
f(x′

1, x2,i+1)− f(x′

1, x2,i)

x2,i+1 − x2,i

=
x2,i+1 − x′

2

x2,i+1 − x2,i
︸ ︷︷ ︸

ω2,i

f(x′

1, x2,i) +
x′

2 − x2,i

x2,i+1 − x2,i
︸ ︷︷ ︸

ω2,i+1

f(x′

1, x2,i+1). (10)

Combining (8), (9) and (10) yields

f(x′

1, x
′

2) = ω2,i (ω1,if(x1,i, x2,i) + ω1,i+1f(x1,i+1, x2,i))

+ ω2,i+1 (ω1,if(x1,i, x2,i+1) + ω1,i+1f(x1,i+1, x2,i+1))

= ω1,iω2,if(x1,i, x2,i) + ω1,i+1ω2,if(x1,i+1, x2,i)

+ ω1,iω2,i+1f(x1,i, x2,i+1) + ω1,i+1ω2,i+1f(x1,i+1, x2,i+1)

=

1∑

j1=0

1∑

j2=0

ω1,i+j1ω2,i+j2f (x1,i+j1 , x2,i+jn) ,

which can be easily extended to any number of state variables. We assume that the points for any
one dimension in the state space are uniformly spaced, whichsimplifies evaluation of the policy
functions. If unevenly spaced nodes are desired, thenFallterp* must be modified to correctly
locate the nearest nodes.

A.3 INTEGRATION A model with both continuous and discrete stochastic variables requires two
types of numerical integration. For continuous stochasticvariables we apply either the Trapezoid
rule or Gauss-Hermite quadrature, and for discrete random variables we use the corresponding
transition matrix to weight each outcome by its likelihood.

A.3.1 TRAPEZOID RULE Suppose there arem realizations of the stochastic component,ε, in
the process for some continuous variablez. Since these realizations show up in agents’ expec-
tations, we perform numerical integration to average across each of thesem realizations. The
trapezoid rule is one method of numerical integration. Assuming uniformly spaced realizations of
ε, the formula for the trapezoid rule is given by

Et[Φ(·, zt+1)] ≈
Pr(ε1)Φ(·, zt+1(ε1)) + Pr(ε2)(Φ(·, zt+1(ε2)))

2
∆ε

+
Pr(ε2)Φ(·, zt+1(ε2)) + Pr(ε3)Φ(·, zt+1(ε3))

2
∆ε

+
Pr(εm−1)Φ(·, zt+1(εm−1)) + Pr(εm)Φ(·, zt+1(εm))

2
∆ε

=
∆ε

2

[

2

m∑

i=1

Pr(εi)(Φ(·, zt+1(εi)))− Pr(ε1)Φ(·, zt+1(ε1))− Pr(εm)Φ(·, zt+1(εm))

]

,

where∆ε is the distance between stochastic realizations,Pr(εi) is the probability of realizationi,
andΦ is the value of the contents of the expectation operator, given the state of the economy. To
obtain the weights (the probabilities) in the trapezoid rule, truncate the distribution of the stochastic
variable. For normal random variables, we recommend truncating the distribution at no less than
four standard deviations, since omitting more of the distribution often leads to inaccurate results.
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A.3.2 GAUSS-HERMITE QUADRATURE Another commonly employed method of numerical
integration is Gauss-Hermite quadrature. Suppose a shock,u, to a continuous variable,z, is nor-
mally distributed with meanµ and varianceσ2. Then expectations can be written as

Et[Φt+1(·, zt+1(u))] = (2πσ2)−1/2

∫
∞

−∞

Φt+1(·, zt+1(u))e
−(u−µ)2/(2σ2)du.

Applying the change of variables,ε = (u− µ)/(
√
2σ), the Gauss-Hermite quadrature rule is

Et[Φt+1(·, zt+1(u))] = π−1/2

∫
∞

−∞

Φt+1(·, zt+1(
√
2σε+ µ))e−ε2dε

≈ π−1/2
n∑

i=1

ωiΦt+1(·, zt+1(
√
2σεi + µ)),

whereεi are the realizations of the standard normal shock,Φ is the value of the contents of the
expectation operator, andωi are Gauss-Hermite weights given byωi = 2n+1n!

√
π[Hn+1(εi)]

−2.
Hn+1 is the physicists’ Hermite polynomial of ordern+ 1.15

We usually adopt the Trapezoid rule over Gauss-Hermite quadrature because it is more stable.
Moreover, with dense and wide enough grids (at least 10 points and 4 standard deviations) for the
continuous shocks, the optimal policy functions under these two methods of numerical integration
are virtually identical, even though the Trapezoid rule relies on a truncated distribution.

A.3.3 MARKOV CHAIN INTEGRATION Suppose a discrete stochastic variable,z, evolves ac-
cording to anm-state first-order Markov chain.16 Once again, these realizations show up in agents’
expectations, and we must integrate across thesem realizations conditional on the previous state.
Suppose the transition matrix is given by

P =








Pr[st = 1|st−1 = 1] Pr[st = 2|st−1 = 1] · · · Pr[st = m|st−1 = 1]
Pr[st = 1|st−1 = 2] Pr[st = 2|st−1 = 2] · · · Pr[st = m|st−1 = 2]

...
...

. . .
...

Pr[st = 1|st−1 = m] Pr[st = 2|st−1 = m] · · · Pr[st = m|st−1 = m]







=








p11 p12 · · · p1m
p21 p22 · · · p2m
...

...
. . .

...
pm1 pm2 · · · pmm







,

where0 ≤ pij ≤ 1 and
∑m

j=1 pij = 1 for all i ∈ {1, 2, . . . , m}. Then the conditional expectation
can be written as

Et [Φt+1(·, zt+1)|st = i] =
[
pi1 pi2 · · · pim

]








Φt+1(·, z1,t+1, st = i)
Φt+1(·, z2,t+1, st = i)

...
Φt+1(·, zm,t+1, st = i)







.

If a model contains both continuous and discrete stochasticvariables, first integrate across the
continuous random variables to obtain a set of values, conditional on the realizations of the discrete
stochastic variable. Then weight each of these values by their corresponding likelihood. This
process yields an expected value across all stochastic components in the model.

15We provide a function,ghquad.m, to compute the Gauss-Hermite weights. To calculate the coefficients of the
Hermite polynomial,ghquad.m requiresHermitePoly.m, which is written by David Terr and readily available
on the MATLAB file exchange.

16Recall that higher order Markov chains can always be described by a first-order transition matrix.
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