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ABSTRACT
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1 TIME-INVARIANT WEIGHTS

In the article, we show that the distributional weights in recursive, Epstein and Zin (1991), pref-
erences must sum to1 when there is an intertemporal preference shock, otherwiseit creates an
asymptote in the value function. However, when the weights are constant they do not need to
sum to1 because it is possible to find a positive monotonic transformation of the value function
that eliminates the asymptote and leaves the stochastic discount factor (SDF) unchanged (e.g., van
Binsbergen et al. (2012)). To demonstrate this point, consider the following recursive preferences

Ut =
[

c
(1−σ)/θ
t + β(Et[U

1−σ
t+1 ])

1/θ
]θ/(1−σ)

, (1)

whereθ ≡ (1− σ)/(1− 1/ψ), σ ≥ 0 determines the coefficient of relative risk aversion,ψ ≥ 0 is
the intertemporal elasticity of substitution (IES),β ∈ (0, 1) is the subjective discount factor, andEt
is the mathematical expectation operator conditional on information in periodt. The distributional
weights,1 andβ, do not sum to 1, so there is an asymptote with unit IES. The SDFis given by

mt,t+1 = β

(

ct
ct+1

)1/ψ ( V 1−σ
t+1

Et[V
1−σ
t+1 ]

)1− 1

θ

.

To find the positive monotonic transformation of the utilityfunction, apply the following steps:

Step 1: Multiply and divide by(1− β)θ−1 to obtain

mt,t+1 = β

(

ct
ct+1

)1/ψ
(1− β)θ−1

(1− β)θ−1

(

V 1−σ
t+1

Et[V
1−σ
t+1 ]

)1− 1

θ

= β

(

ct
ct+1

)1/ψ
(

(

(1− β)θ/(1−σ)Vt+1

)1−σ

Et[((1− β)θ/(1−σ)Vt+1)
1−σ

]

)1− 1

θ

.

Step 2: LetWt ≡ (1− β)θ/(1−σ)Vt, a positive monotonic transformation ofVt. The SDF becomes

mt,t+1 = β

(

ct
ct+1

)1/ψ ( W 1−σ
t+1

Et[W
1−σ
t+1 ]

)1− 1

θ

.

Step 3: Check the properties ofWt. We can rewrite (1) by substituting forVt andVt+1 to obtain

(

(1− β)−θ/(1−σ)Wt

)(1−σ)/θ
= c

(1−σ)/θ
t + β

(

Et[
(

(1− β)−θ/(1−σ)Wt+1

)1−σ
]
)1/θ

→ (1− β)−1W
(1−σ)/θ
t = c

(1−σ)/θ
t + (1− β)−1β

(

Et[W
1−σ
t+1 ]

)1/θ

→Wt =
[

(1− β)c
(1−σ)/θ
t + β

(

Et[W
1−σ
t+1 ]

)1/θ
]θ/(1−σ)

. (2)

The distributional weights in (2) sum to1, while the SDF is the same as when the weights did not
sum to1. However, if a preference shock is included and the distributional weights do not sum to1,
as in the BB model, then a similar transformation ofVt will introduce the preference shock at both
t andt+1 in the new utility function so the weights will not sum to1 even after the transformation.
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Figure 1: Key terms in the decomposition of the augmented discount factor in equation (18) of the comment.

2 AUGMENTED DISCOUNT FACTOR DECOMPOSITION

For simplicity, the decomposition of the augmented discount factor given in equation (18) and
presented in figure 2 of the comment is based on an approximation wherecBB1 = βr/(1 + β).
We could instead solve for equilibriumcBB1 . Figure 1shows that the approximate decomposition
presented in the paper is nearly identical to the decomposition based on the exact solution forcBB1 .

3 TOY MODEL I: TWO-PERIODMODEL

The section solves a simple two-period endowment economy with BB preferences that analytically
shows the relationship between demand uncertainty and household impatience. We setη = 1 so
u(ct, nt) = ct and{at+τ}∞τ=0 = {1, at+1, 0, 0, . . . }. We assumelog(at+1) ∼ N(−σ2

a/2, σ
2
a) so

at+1 > 0 andEtat+1 = 1, butat+τ for τ 6= 1 are known with certainty. Then preferences become

UBB
t = [(1− β)c

(1−σ)/θ
t + β(Et[a

θ
t+1c

1−σ
t+1 ])

1/θ]θ/(1−σ).

The household receives a unit endowment each period and can save,xt, at an exogenous net real
interest ratẽr = 0. For simplicity we setβ = 1 so the household’s optimality condition is given by

(1− xt)
−1/ψ = (Et[a

θ
t+1])

1/θ(1 + xt)
−1/ψ.

The household’s intertemporal choice between consuming today or tomorrow depends on the value
of B ≡ (Et[a

θ
t+1])

1/θ = Et[exp(θ log at+1)]
1/θ = exp((θ−1)σ2

a/2), whereB alters the household’s
impatience relative to the certainty equivalent case. In the special case whenσa = 0, B = 1 so
x∗t = 0 andc∗t = c∗t+1 = 1. Whenσa > 0, we obtain the following conditions (based onσ > 1):

2
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1. Whenθ < 1 (i.e.,ψ > 1 or ψ < 1/σ), thenB < 1 andc∗t > c∗t+1 (impatient households).

2. Whenθ = 1, thenB = 1 andc∗t = c∗t+1 (certainty equivalent households).

3. Whenθ > 1, just like in BB’s calibration, thenB > 1 andc∗t < c∗t+1 (patient households).

4. Asθ → +∞ (ψ → 1 from below),B → +∞ andc∗t → 0.

5. Asθ → −∞ (ψ → 1 from above), thenB → 0 andc∗t → cmax, wherecmax is determined by
the natural borrowing constraint.

4 TOY MODEL II: I NFINITE HORIZON MODEL

The section solves a small-open endowment economy-type model using a Campbell-Shiller log-
linear approximation that exploits the assumption of log-normal shocks. The benefit of this model
is that it is easy to see the asymptote in the solution and the results are based on the shock in BB.

4.1 MODEL A representative household chooses sequences of consumption,ct, to maximize

Ut = [at(1− β)(ct/c)
1−χ + β(Zt/Z)

1−χ]1/(1−χ)

whereχ = 1/ψ is the inverse IES and the risk aggregator,Zt, is defined asZt ≡ (Et[U
1−σ
t+1 ])

1/(1−σ).
The preferences are normalized soU = 1 in steady state. For simplicity, we assumeat is given by

ât ≡ log at − log a = σa,t−1εt, σ̂2
a,t ≡ σ2

a,t − σ2
a = σσaεσ,t, εt, εσ,t ∼ N(0, 1),

where a hat denotes log-deviations from the steady state. The household’s choices are constrained
by ct + wt+1/r = wt, wherewt is wealth andr is the gross return. The Euler equation is given by

1 = Et[βr(at+1/at)(ct+1/ct)
−χ(Vt+1/Zt)

χ−σ(1/Z)1−χ],

whereVt is the value function that solves the household’s constrained optimization problem.

4.2 LOG-LINEAR SOLUTION We posit the following minimum state variable solution:

ĉt = Awŵt + Aaât + Aσσ̂
2
a,t,

V̂t = Bwŵt +Baât +Bσσ̂
2
a,t,

ŵt+1 = Cwŵt + Caât + Cσσ̂
2
a,t.

Aσ is the main object of interest, since we are concerned with the response of consumption to a
demand uncertainty shock. To solve the model, we first log-linearize the value function to obtain

V̂t = (1− β)[ât/(1− χ) + ĉt] + βẐt,

Ẑt = − logZ + log(Et[exp((1− σ)V̂t+1)])/(1− σ).

Notice that in log-linearized form,̂at enters the value function equation with coefficient1/(1−χ).
It is the presence of this term that will generate the asymptote inAσ when the IES is equal to1.

3
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After substituting the guess into the value function and then equating coefficients, we find

Bw = (1− β)Aw + βBwCw, Ba = (1− β)/(1− χ) + (1− β)Aa + βBwCa,

Bσ = (1− β)Aσ + β(BwCσ + (1− σ)B2
a/2).

Next, we log-linearize the Euler equation to obtain

0 = log(βR)− (1− σ) logZ

+ log(Et[exp(ât+1 − ât − χ(ĉt+1 − ĉt) + (χ− σ)(V̂t+1 − Ẑt))]).

As before, we substitute in the unknown decision rules, collect terms, and take expectations. Since
the Euler equation must hold at all points in the state space,we obtain the following restrictions:

0 = Aw(1− Cw)χ, 0 = (1− Aaχ) + AwCaχ,

0 = χ(Aσ − AwCσ) + (1− Aaχ + (χ− σ)Ba)
2/2− (1− σ)(χ− σ)B2

a/2.

In steady state,c/w = r̃/r where r̃ = r − 1, so the log-linear budget constraint is given by
ŵt+1 = rŵt − r̃ĉt. Substituting in the guess for the final time and equating coefficients yields

Cw = r − r̃Aw, Ca = −r̃Aa, Cσ = −r̃Aσ.

Thus, we have9 equations and9 unknown coefficients. The system impliesAw = Bw = Cw = 1,

Aa = 1/(χr), Ca = −r̃/(χr), Ba = (1− β)/(1− χ) + (1− βr)/(χr),

Aσ = −((1 −Aaχ+ (χ− σ)Ba)
2 − (1− σ)(χ− σ)B2

a)/(2χr).

The gross return,r, is endogenous and must satisfy the steady-state Euler equation, given by,

log(βr) = [(1− σ)2B2
a − (1− χAa + (χ− σ)Ba)

2]σ2
a/2

+ [(1− σ)2B2
σ − ((χ− σ)Bσ − χAσ)

2]σ2
σa/2.

NoticeAσ depends onBa. SinceBa has an asymptote whenχ = 1 (IES equals1) so doesAσ.
Therefore, it is possible to obtain an arbitrary large consumption response by setting the IES closer
to 1. As χ tends to0 or ∞ (IES moves away from1), Aσ approaches0. When the degree of risk
aversion,σ, increases, the asymptote has a bigger effect on the consumption response. In the case
whenχ = σ (expected utility),Ba drops out of the equation forAσ, so the asymptote disappears.

4.3 ALTERNATIVE PREFERENCES We repeat the same exercise with the alternative preferences,

Ut = [(1− atβ)(ct/c)
1−χ + atβ(Zt/Z)

1−χ]1/(1−χ),

so the weights on current and future utility sum to1. The log-linear value function is given by

V̂t = (1− β)ĉt + βẐt.

Notice thêat term that appeared with the BB preferences drops out. The Euler equation becomes

1 = Et

[

atβr

(

1− at+1β

1− atβ

)(

ct+1

ct

)

−χ(
Vt+1

Zt

)χ−σ (
1

Z

)1−χ
]

.

4
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Once again, we log-linearize the value function and the Euler equation, plug in the decision rules,
and equate coefficients. After solving the system of equations, the new coefficients are given by

Aa = −1/(χr(1− β)), Ba = −(1− βr)/(χr(1− β)),

Aσ = −((−β/(1− β)− Aaχ+ (χ− σ)Ba)
2 − (1− σ)(χ− σ)B2

a)/(2χr).
(3)

The asymptote inAσ disappears, since there is no longer an asymptote inBa. Also,r is given by

log(βr) = [(1− σ)2B2
a − (−β/(1− β)− χAa + (χ− σ)Ba)

2]σ2
a/2

+ [(1− σ)2B2
σ − ((χ− σ)Bσ − χAσ)

2]σ2
σa/2.

After substitutingr into (3), we findAσ = 0. To see that result, we guess and verify thatr = 1/β
by notingχAa = −β/(1− β) andBa = 0. Thus, households are certainty equivalent with respect
to intertemporal preference shocks with our alternative preferences that eliminate the asymptote.

0 0.5 1 1.5 2
IES (ψ)

-0.05

-0.025

0

0.025

0.05

C
o
n
su
m
p
ti
o
n
(%

)

BB Preferences

0 0.5 1 1.5 2
IES (ψ)

-0.05

-0.025

0

0.025

0.05
C
o
n
su
m
p
ti
o
n
(%

)

Alternative Preferences

Figure 2: Impact response of consumption to a change in the standard deviation of the preference shock (Aσ).

4.4 ASYMPTOTE Figure 2plots the response of consumption to a preference volatility shock
(Aσ) with the BB preferences and our alternative specification across different IES values. We
set the coefficient of relative risk aversion,σ, to 80 and the shock standard deviations,σa and
σσa , to 0.003—the values in BB. As our analytical solution demonstrates,there is no response of
consumption to an increase in volatility with our alternative preferences. In contrast, the BB pref-
erences break certainty equivalence because there is an asymptote in the response of consumption
when the IES equals1. Therefore, values of the IES around1 magnify the effect of changes in̂σ2

a.
1

5 IMPULSE RESPONSES: BB VS. ALTERNATIVE PREFERENCES

Figure 3compares impulse responses to a one standard deviation level and volatility shock to
household preferences under BB preferences and our alternative specification. All of the parame-
ters, including the IES, are set to the baseline values in BB.The top row shows the responses to the
level shock are nearly identical for the two sets of preferences, which validates our transformation
of the shock process. The impulse responses to the other shocks in the model—technology level
and volatility shocks—are also mostly unaffected by changing the preference specification. The

1The qualitative results are identical when we solve the model with persistent shocks to household preferences.
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Figure 3: Responses of output, consumption, and investmentto a1 standard deviation preference shock.

only time the model behaves differently is in response to higher volatility. The bottom row shows
the BB preferences produce economically meaningful declines in output, consumption, and in-
vestment. In contrast, the responses to demand uncertaintyshocks under our alternative preference
specification are so small it is difficult to see their shape and size when plotted on the same axes.

6 COMPARISON WITH RISK PREMIUM UNCERTAINTY SHOCKS

Risk premium shocks are a common alternative to preference shocks because they are a proxy for
changes in demand. They also help explain the comovement between consumption and investment
because risk premium shocks affect the return on risk-free bonds relative to the return on capital.
If we remove the preference shock by settingat = ā and add a risk premium shock to the return
on the nominal bond in the BB model, then the first-order condition for the bond becomes

1 = Et[mt,t+1a
rp
t rt/πt+1],

wherert is the gross nominal interest rate andπt is the gross inflation rate. Following Smets and
Wouters (2007),arpt is a risk-premium shock that follows the same process as the preference shock.

To match the responses from the VAR, the model requires a verylarge standard deviation of
the risk-premium uncertainty shock (figure 4). As a result, the model significantly overstates the
unconditional and stochastic volatility in the data, as shown in table I. Moreover, the large standard
deviation causes the model to overstate the increase in stock market volatility from the VAR. When
we decrease the standard deviation of the volatility shock to match stock market volatility, the
output response is much smaller than it is in the data even though the unconditional volatilities
from the model are still larger than in the data. To test the robustness of our result, we reran BB’s

6
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Figure 4: Responses of output and stock market volatility toa1 standard deviation increase in risk premium volatility.

Unconditional Volatility Stochastic Volatility

Moment Data σσ
rp

= 0.0025 σσ
rp

= 0.0004 Data σσ
rp

= 0.0025 σσ
rp

= 0.0004

Output 1.1 5.1 3.0 0.4 1.5 0.8

Consumption 0.7 1.5 0.9 0.2 0.4 0.2

Investment 3.8 15.8 8.8 1.6 4.5 2.2

Table I: Standard deviations (%). The data is based on a sample from 1986-2014. The model-based statistics reflect the
average from repeated simulations with the same length as the data. Stochastic volatility is measured by the standard
deviation of the time-series of 5-year rolling standard deviations. These procedures follow table 2 from BB.

impulse response matching exercise, replacing the preference shock with a risk premium shock.
However, the algorithm was unable to find parameters that allowed the model to match the VAR.

7 SENSITIVITY ANALYSIS I: EXPECTEDUTILITY & A DDITIVE SEPARABILITY

Expected utility is common in the literature. Epstein-Zin preferences collapse to expected utility
whenψ = 1/σ because the value function drops out of the SDF.Figure 5compares the impact
responses of real activity to a preference volatility shock(top panel) and a risk premium volatility
shock (bottom panel) under expected utility. In addition toshowing the effects of the shocks under
BB’s and our alternative preferences, we also consider additively separable preferences, given by,
E0

∑

∞

t=0 β
tat[(c

1−σ
t − 1)/(1 − σ) − χn1+η

t /(1 + η)], where1/η is the Frisch elasticity of labor
supply and1/σ is the IES. With additively separable preferences, household optimality implies

wt = χnηt c
σ
t and mAS

t,t+1 = β(at+1/at)(ct/ct+1)
σ.

As is common practice, the preference parameter,χ, is set so steady-state labor hours equal1/3 of
available time. The other parameters and equilibrium conditions are the same as the BB model.

A preference shock has a similar effect with the BB preferences and our alternative preferences.
The magnitudes are also similar with additively separable preferences. Interestingly, in all three
cases both output and investment increase, while consumption decreases. The comovement prob-
lem, however, is resolved by replacing the preference shockwith a risk premium shock, regardless
of whether the model has multiplicative or additively separable preferences. Once again, the im-
pact responses are similar under additively separable preferences, although they have a different

7
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(b) Impact responses to a risk premium volatility shock.

Figure 5: Impact effect on output, consumption, and investment from a1 standard deviation volatility shock.

relationship with the IES parameter than in the multiplicative case. By correcting the comovement
problem, the responses are slightly larger but still considerably smaller than BB’s VAR estimates.

8 SENSITIVITY ANALYSIS II: I NTERESTRATE INERTIA & FRISCH ELASTICITY

Figure 6provides additional sensitivity analysis on the persistence of the nominal interest rate in
the policy rule and the Frisch elasticity of labor supply by reproducing figure 3 in the manuscript.
In the BB model, there is no persistence in the Taylor rule, but VAR evidence shows the federal
funds rate responds to shocks in a hump-shaped pattern over time. It is also a feature commonly
included in DSGE models. BB set the Frisch elasticity of labor supply to2. We decided to examine
other values given its importance for the precautionary labor supply response to uncertainty shocks.

Adding interest rate smoothing has very little effect on thesize of the responses. Furthermore,
given BB’s baseline calibration, it does not fix the comovement problem. In the special case
where the capital adjustment cost parameter is near0, output and investment both decline but the
magnitudes are so small it is impossible to find parameters where the model matches the responses
from the VAR. The Frisch elasticity of labor supply has a slightly larger effect on the responses,
but they are still two orders of magnitude smaller than with the BB preferences and output and
investment both increase. With elasticities near zero, output declines but investment still increases.

8
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Figure 6: Impact effect on output, consumption, and investment from a1 standard deviation preference volatility shock
with our alternative preferences. In each panel, the dashedline shows the response with the parameter value from BB.
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Figure 7: Responses of output to a1 standard deviation increase in the level and volatility of technology.
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9 ASYMPTOTE WITH TECHNOLOGY SHOCKS

For values of the IES near1, this section shows the BB preferences can affect the responses of
other shocks in the model besides a preference shock. In their appendix, BB introduce a technology
volatility shock that evolves in the same way as the preference volatility shock. We set the standard
deviation of the volatility shock,σσ

Z

, so a one standard deviation positive shock generates a95%
increase in volatility, just like the preference volatility shock. The other parameters are set to the
values BB estimate, so the responses are directly comparable. Figure 7reports the impact effect
on output from a one standard deviation increase in the leveland volatility of technology as a
function of the IES. Once again, with the BB preferences an asymptote appears with unit IES, and
it goes away when we adjust the distributional weights in theutility function so they always sum
to one. Those results show the effects of the preference shock on the time aggregator spill over to
the predictions of other shocks. Given the BB calibration, however, the asymptote only has a large
effect on the responses when the IES is close to unity similarto first moment preference shocks.
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