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ABSTRACT

This appendix extends our analysis along three dimensi@m, it provides additional
analytical results that show how the specification of thégoemce shock in recursive, Epstein
and Zin (1991), preferences affects equilibrium outcories, it explores the implications of
using a risk premium shock instead of a preference shockddiitheely separable preferences
in consumption and leisure. Three, it conducts furtherigeitg analysis on the parameters.
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1 TIME-INVARIANT WEIGHTS

In the article, we show that the distributional weights inuesive, Epstein and Zin (1991), pref-
erences must sum tbwhen there is an intertemporal preference shock, othenvigeates an
asymptote in the value function. However, when the weightscanstant they do not need to
sum tol because it is possible to find a positive monotonic transébion of the value function
that eliminates the asymptote and leaves the stochastioutisfactor (SDF) unchanged (e.g., van
Binsbergen et al. (2012)). To demonstrate this point, d@rghe following recursive preferences

v, = [ + sy ], )

wheref = (1 —o0)/(1 —1/¢), o > 0 determines the coefficient of relative risk aversiorz 0 is

the intertemporal elasticity of substitution (IES)e (0, 1) is the subjective discount factor, ahgl

is the mathematical expectation operator conditional &rimation in period. The distributional
weights,1 and3, do not sum to 1, so there is an asymptote with unit IES. The iS[gven by
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To find the positive monotonic transformation of the utifityjction, apply the following steps:

Step 1: Multiply and divide by(1 — 3)’~! to obtain

(e N =gt v T
mMH_ﬁ(aI) <1—@*4<ﬂmiﬂ)
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Step 2: Let W, = (1 — B)%(1=9)V}, a positive monotonic transformation &f. The SDF becomes
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Step 3: Check the properties d¥/;. We can rewriteX) by substituting fol/; andV;,; to obtain

(1= 30w = et (B (1= B0 )
= (1= ) W = (- gy (B
0/(1~0)

W= [=pd " s (BN @
The distributional weights in2) sum tol, while the SDF is the same as when the weights did not
sumtol. However, if a preference shock is included and the didtiobal weights do not sum to,

as in the BB model, then a similar transformatiod/fvill introduce the preference shock at both
t andt+ 1 in the new utility function so the weights will not sum t@ven after the transformation.
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Figure 1: Key terms in the decomposition of the augmentezbdist factor in equation (18) of the comment.

2 AUGMENTED DISCOUNTFACTOR DECOMPOSITION

For simplicity, the decomposition of the augmented dis¢daator given in equation (18) and
presented in figure 2 of the comment is based on an approximatherec?? = Br/(1 + f3).
We could instead solve for equilibriun¥?. Figure 1shows that the approximate decomposition
presented in the paper is nearly identical to the deconipngiased on the exact solution fdt?.

3 Toy MODEL I: TwWO-PERIODMODEL

The section solves a simple two-period endowment econortiyBB preferences that analytically
shows the relationship between demand uncertainty anceholdsimpatience. We set= 1 so
u(ey,ny) = ¢ and{ag .12, = {1,a4:1,0,0,...}. We assuméog(as, ;) ~ N(—02/2,02) so
a;+1 > 0andFE,a, 1 = 1, buta, ., for 7 £ 1 are known with certainty. Then preferences become

1-0)/0 —0 —0
UtBB =[(1- ﬁ)C,E A ﬁ(Et[a?JrlC%HDl/e]g/(l ).

The household receives a unit endowment each period andagancg at an exogenous net real
interest rate" = 0. For simplicity we sets = 1 so the household’s optimality condition is given by

(1= )™ = (Bilafa]) /(1 + )7

The household’s intertemporal choice between consumuteytor tomorrow depends on the value
of B = (Ey[al1])"? = E[exp(0logai1)]Y? = exp((0—1)c2/2), whereB alters the household’s
impatience relative to the certainty equivalent case. éngpecial case when, = 0, B = 1 so

xy = 0andc; = ¢;, = 1. Wheno, > 0, we obtain the following conditions (based on> 1):



Whend < 1 (i.e.,v» > 1 ory < 1/0), thenB < 1 andc; > c;,, (impatient households).
Whend = 1, thenB = 1 andc; = ¢, (certainty equivalent households).
Whend > 1, just like in BB’s calibration, thef > 1 andc; < ¢}, ; (patient households).

Asf — +oo (v» — 1 from below),B — +o00 andc; — 0.

a > 0w bdhoE

Asf — —oo (¢ — 1 from above), the® — 0 andc; — ¢™**, wherec™* is determined by
the natural borrowing constraint.

4 Toy MODEL II: I NFINITE HORIZON MODEL

The section solves a small-open endowment economy-typelnisthg a Campbell-Shiller log-
linear approximation that exploits the assumption of legamal shocks. The benefit of this model
is that it is easy to see the asymptote in the solution andethdts are based on the shock in BB.

4.1 MoDEL A representative household chooses sequences of consamptio maximize
Up = [ay(1 = B)(er/e) ™ + B(Z,) 2)' ]V

wherey = 1/1 is the inverse IES and the risk aggregator,is defined a%; = (E,[U, 7))/ 1=,
The preferences are normalizedige= 1 in steady state. For simplicity, we assumas given by

A ~2 2 2
a; =loga; —loga = 04116y, 0ny =041 — 0, = OgaEay, E1,600 ~ N(0,1),

where a hat denotes log-deviations from the steady stageh®tisehold’s choices are constrained
by ¢; + w11 /7 = wy, wherew, is wealth and- is the gross return. The Euler equation is given by

1= Ey[Br(a/a) (e /c) (Vi /Z) 7 (1/2)' 7],
whereV; is the value function that solves the household’s constthoptimization problem.
4.2 LOG-LINEAR SOLUTION We posit the following minimum state variable solution:

A . . A2
¢ = Ay + Agar + Aso

a,t?

Vi = By + B,a; + By62

a,t’

~ ~ ~ ~2
Wty1 = wat -+ CaCLt -+ CUaa,t'

A, is the main object of interest, since we are concerned wihrésponse of consumption to a
demand uncertainty shock. To solve the model, we first logdiize the value function to obtain

Vi=(1-B)a/(1—x) + &l + BZ,
Zy = —log Z + log(Ei[exp((1 — 0)Viz1)]) /(1 — o).

Notice that in log-linearized fornd,, enters the value function equation with coefficieéptl — ).
It is the presence of this term that will generate the asytepioA, when the IES is equal to.



After substituting the guess into the value function anchtbguating coefficients, we find

Bw = (1 - B)Aw + 5chwa Ba = (1 - 5)/(1 - X) + (1 - 5)Aa + BBwCaa
Bo = (1 - /B)AO' + B(cha + (1 - 0)32/2)

Next, we log-linearize the Euler equation to obtain
0=log(BR)— (1 —0)logZ
+log(Bufexp(ary — @ — x(ér41 — &) + (x — 0) (Vigr — Z0)]).

As before, we substitute in the unknown decision rulesecblierms, and take expectations. Since
the Euler equation must hold at all points in the state spaeabtain the following restrictions:

0=A,1-Cy)x, 0=(1-A.x)+ A,C.x,
0= x(Ay — AuCo) + (1 = Aax + (X = 0)Ba)*/2 — (1 = 0)(x — 0) B3 /2.

In steady state¢/w = 7/r wherei = r — 1, so the log-linear budget constraint is given by
Wy = rwy — 76 Substituting in the guess for the final time and equatindfiooents yields

Co=1r—TA,, C,=-TA, C,=—-TA,.
Thus, we havé equations an@ unknown coefficients. The system implids = B,, = C,, = 1,

A, =1/(xr), Co=—-7/(xr), Ba=1-0)/(1—x)+ (1—p5r)/(xr),
Ay =—(1—Ax+ (x—0)B.)?>— (1 —0)(x —0)B2)/(2xr).

The gross return;, is endogenous and must satisfy the steady-state Euleti@gugiven by,

log(Br) = [(1 = 0)*B7 = (1 = xAs + (x — 0)Ba)*|07/2
+[(1=0)*B; — ((x = 0) By — xAs)*]0ge /2.

Notice A, depends orB,. SinceB, has an asymptote whepn = 1 (IES equalsl) so doesA,.
Therefore, it is possible to obtain an arbitrary large comstion response by setting the IES closer
to 1. As y tends to0 or co (IES moves away from), A, approaches. When the degree of risk
aversiong, increases, the asymptote has a bigger effect on the cotisumn@sponse. In the case
wheny = o (expected utility),B, drops out of the equation fot,, so the asymptote disappears.

4.3 ALTERNATIVE PREFERENCES We repeat the same exercise with the alternative prefesence
Up = (1= aiB)(er/e) ™ + (2, 2)' V079,
so the weights on current and future utility sumitdrhe log-linear value function is given by
V= (1—B)é + B

Notice thea, term that appeared with the BB preferences drops out. Ther Eguation becomes

T—ar1B\ [\ X (Vi )7 1\ ¥
(7)) () (%) (2)
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Once again, we log-linearize the value function and the iedeation, plug in the decision rules,
and equate coefficients. After solving the system of equoatithe new coefficients are given by

Ao ==1/(xr(1L = B)), Ba=—(1=pr)/(xr(1-p)),
Ag = =((=B/(1 = B) = Aux + (x = 0)Ba)* = (1 = o) (x — 0) B;)/ (2xr).

The asymptote i, disappears, since there is no longer an asymptof® irAlso, r is given by

log(Br) = [(1 = 0)*B; = (=B/(1 = B) = xAa + (x = 0)B.)’]o; /2
+[(1=0)*B; = ((x = 0)Bs — xAs)*|05a /2.

@)

After substituting- into (3), we find A, = 0. To see that result, we guess and verify that 1/
by notingxA4, = —5/(1 — 5) andB, = 0. Thus, households are certainty equivalent with respect
to intertemporal preference shocks with our alternatiedgrences that eliminate the asymptote.
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Figure 2: Impact response of consumption to a change in #imelatd deviation of the preference shodk ).

4.4 AsYMPTOTE Figure 2plots the response of consumption to a preference vojasitibck
(A,) with the BB preferences and our alternative specificaticnoss different IES values. We
set the coefficient of relative risk aversion, to 80 and the shock standard deviationsg, and
04a, 10 0.003—the values in BB. As our analytical solution demonstratieste is no response of
consumption to an increase in volatility with our altermatpreferences. In contrast, the BB pref-
erences break certainty equivalence because there is aptdg in the response of consumption
when the IES equals Therefore, values of the IES arouhdnagnify the effect of changes 7.

5 IMPULSERESPONSESBB VvS. ALTERNATIVE PREFERENCES

Figure 3compares impulse responses to a one standard deviatidnaledevolatility shock to
household preferences under BB preferences and our dltersaecification. All of the parame-
ters, including the IES, are set to the baseline values inTBiB.top row shows the responses to the
level shock are nearly identical for the two sets of prefeesnwhich validates our transformation
of the shock process. The impulse responses to the othekshothe model—technology level
and volatility shocks—are also mostly unaffected by chagdhe preference specification. The

1The qualitative results are identical when we solve the itk persistent shocks to household preferences.
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Figure 3: Responses of output, consumption, and investtoexit standard deviation preference shock.

only time the model behaves differently is in response théigolatility. The bottom row shows
the BB preferences produce economically meaningful deslin output, consumption, and in-
vestment. In contrast, the responses to demand uncersiiotks under our alternative preference
specification are so small it is difficult to see their shape sine when plotted on the same axes.

6 COMPARISON WITHRISK PREMIUM UNCERTAINTY SHOCKS

Risk premium shocks are a common alternative to preferdmoeks because they are a proxy for
changes in demand. They also help explain the comovememebrtconsumption and investment
because risk premium shocks affect the return on risk-foeglb relative to the return on capital.
If we remove the preference shock by setting= a and add a risk premium shock to the return
on the nominal bond in the BB model, then the first-order coowlifor the bond becomes

1=E, [mt,t+1afp7’t/7rt+1],

wherer, is the gross nominal interest rate ands the gross inflation rate. Following Smets and
Wouters (2007)q;” is a risk-premium shock that follows the same process ag#fenence shock.
To match the responses from the VAR, the model requires alaeyg standard deviation of
the risk-premium uncertainty shockgure 4. As a result, the model significantly overstates the
unconditional and stochastic volatility in the data, asighon table L. Moreover, the large standard
deviation causes the model to overstate the increase ik staket volatility from the VAR. When
we decrease the standard deviation of the volatility shocknatch stock market volatility, the
output response is much smaller than it is in the data evamgtihthe unconditional volatilities
from the model are still larger than in the data. To test thistness of our result, we reran BB’s
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Figure 4: Responses of output and stock market volatiliyt@tandard deviation increase in risk premium volatility.

Unconditional Volatility Stochastic Volatility
Moment Data o¢°" =0.0025 ¢°" =0.0004 Data ¢°" =0.0025 o°" =0.0004
Output 1.1 5.1 3.0 0.4 1.5 0.8
Consumption 0.7 1.5 0.9 0.2 0.4 0.2
Investment 3.8 15.8 8.8 1.6 4.5 2.2

Table I: Standard deviation$). The data is based on a sample from 1986-2014. The modetstatistics reflect the
average from repeated simulations with the same lengtheadata. Stochastic volatility is measured by the standard
deviation of the time-series of 5-year rolling standardidons. These procedures follow table 2 from BB.

impulse response matching exercise, replacing the prefershock with a risk premium shock.
However, the algorithm was unable to find parameters thatvalll the model to match the VAR.

7 SENSITIVITY ANALYSIS |: EXPECTEDUTILITY & ADDITIVE SEPARABILITY

Expected utility is common in the literature. Epstein-Zimeferences collapse to expected utility
whenvy = 1/0 because the value function drops out of the SEIGure 5compares the impact
responses of real activity to a preference volatility shiok panel) and a risk premium volatility
shock (bottom panel) under expected utility. In additiostiowing the effects of the shocks under
BB’s and our alternative preferences, we also considetiadtyi separable preferences, given by,
Eo 5%, Blag(ci™ — 1)/(1 — o) — xn, ™"/ (1 + )], wherel /7 is the Frisch elasticity of labor
supply andl /o is the IES. With additively separable preferences, housgebmtimality implies

wy = xnfe] and my, = Bla/ag)(c/en)”
As is common practice, the preference parametds set so steady-state labor hours equalof
available time. The other parameters and equilibrium dgr are the same as the BB model.

A preference shock has a similar effect with the BB prefeesrand our alternative preferences.
The magnitudes are also similar with additively separabéfgpences. Interestingly, in all three
cases both output and investment increase, while consomgéicreases. The comovement prob-
lem, however, is resolved by replacing the preference shattka risk premium shock, regardless
of whether the model has multiplicative or additively sejtde preferences. Once again, the im-
pact responses are similar under additively separablenemdes, although they have a different
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(b) Impact responses to a risk premium volatility shock.

Figure 5: Impact effect on output, consumption, and invesinfrom al standard deviation volatility shock.

relationship with the IES parameter than in the multiplicatase. By correcting the comovement
problem, the responses are slightly larger but still cogrsidly smaller than BB’s VAR estimates.

8 SENSITIVITY ANALYSIS Il: INTERESTRATE INERTIA & FRISCHELASTICITY

Figure 6provides additional sensitivity analysis on the persisteof the nominal interest rate in
the policy rule and the Frisch elasticity of labor supply bpnoducing figure 3 in the manuscript.
In the BB model, there is no persistence in the Taylor rulé, VAR evidence shows the federal
funds rate responds to shocks in a hump-shaped patternimeerit is also a feature commonly
included in DSGE models. BB set the Frisch elasticity of lsgoply to2. We decided to examine
other values given its importance for the precautionargiabipply response to uncertainty shocks.
Adding interest rate smoothing has very little effect onglae of the responses. Furthermore,
given BB’s baseline calibration, it does not fix the comovataoblem. In the special case
where the capital adjustment cost parameter is fgautput and investment both decline but the
magnitudes are so small it is impossible to find parameteesevtne model matches the responses
from the VAR. The Frisch elasticity of labor supply has alstig larger effect on the responses,
but they are still two orders of magnitude smaller than wité BB preferences and output and
investment both increase. With elasticities near zerquiwdeclines but investment still increases.
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Figure 7: Responses of output td atandard deviation increase in the level and volatilityeatinology.



9 ASYMPTOTE WITHTECHNOLOGY SHOCKS

For values of the IES nedr, this section shows the BB preferences can affect the regsoof
other shocks in the model besides a preference shock. heghgendix, BB introduce a technology
volatility shock that evolves in the same way as the prefeemlatility shock. We set the standard
deviation of the volatility shockz®”, so a one standard deviation positive shock genera@g$a
increase in volatility, just like the preference volatilghock. The other parameters are set to the
values BB estimate, so the responses are directly comgaraiglure 7reports the impact effect
on output from a one standard deviation increase in the lawelvolatility of technology as a
function of the IES. Once again, with the BB preferences gmasote appears with unit IES, and
it goes away when we adjust the distributional weights inutikity function so they always sum
to one. Those results show the effects of the preference&ksimothe time aggregator spill over to
the predictions of other shocks. Given the BB calibratiawéver, the asymptote only has a large
effect on the responses when the IES is close to unity sitalérst moment preference shocks.
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