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1 INTRODUCTION

The matching function—the mapping from job seekers and vacancies into matches—is a core com-
ponent of labor search and matching models. In particular, the elasticity of matches with respect to
vacancies, which we refer to as the matching elasticity, is a key object in empirical and structural
analysis. The Cobb-Douglas matching function is the most common specification, even though it
imposes a constant matching elasticity that is unlikely to hold empirically. By relaxing the Cobb-
Douglas assumption, this paper shows that modest cyclical variation in the matching elasticity, in
line with recent empirical estimates, significantly affects higher-order moments and optimal policy.

To motivate our analysis, we first review the extensive empirical literature that estimates the
matching elasticity. Although most of this work imposes the typical Cobb-Douglas specification,
the wide range of estimates suggests that a fixed matching elasticity does not provide the best de-
scription of the data. Furthermore, Lange and Papageorgiou (2020) non-parametrically estimate
the matching function and find support for a procyclical elasticity that fluctuates between 0.15 and
0.3. This motivates us to characterize the nonlinear effects of a general constant returns to scale
matching function without a priori restrictions on the mean or cyclicality of the matching elasticity.

Using a simple model that permits a closed-form solution, we show the shape of the job finding
rate as a function of productivity determines the nonlinearity in labor market dynamics. The con-
vexity or concavity of the job finding rate function depends on the elasticity of substitution in the
matching function, which controls the cyclicality of the matching elasticity. The job finding rate
is convex when the matching elasticity is sufficiently procyclical and concave when the matching
elasticity is sufficiently countercyclical. Intuitively, a procyclical matching elasticity increases the
transmission of vacancies to matches when productivity increases, which amplifies the increase in
the job finding rate and generates convexity. Likewise, decreases in the job finding rate are ampli-
fied with a countercyclical matching elasticity, generating concavity. The nonlinearity in the job
finding rate then transmits to the unemployment rate through the law of motion for unemployment.

To quantify the mechanism and show that our analytical results are robust to a more general
setting, we solve a textbook labor search and matching model nonlinearly using a constant elas-
ticity of substitution (CES) matching function that nests the Cobb-Douglas specification. We find
that cyclical variation in the matching elasticity, consistent with the estimates in Lange and Papa-
georgiou (2020), produces large differences in higher-order business cycle moments. For example,
when holding the standard deviation of the unemployment rate fixed, switching from a counter-
cyclical to a procyclical matching elasticity lowers the skewness of the unemployment rate from
2.37 to 0.29, nearly eliminating the nonlinear labor market dynamics emphasized in the literature.
A potentially important simplification of the textbook search and matching model is that it has a
constant labor force. Since labor force participation is an important aspect of labor market flows,
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we show our findings also extend to a model with an endogenous labor force participation decision.
We conclude by deriving the normative implications of a general matching function, thus ex-

tending the well-known results for the Cobb-Douglas specification. Away from this knife-edge
case where the matching elasticity is constant, we show the cyclicality of the matching elasticity
qualitatively affects the cyclicality of the vacancy tax that alleviates the externalities endemic to
the frictional matching process. In addition, the differences in nonlinear unemployment dynamics
that we document across matching functions transmit to consumption and hence to cyclical move-
ments in the efficient real interest rate, which is a key ingredient of optimal monetary policy design.
Understanding the true matching function is crucial for the conduct of optimal policy interventions.

The positive and normative implications of the matching function and uncertainty surrounding
empirical estimates motivate additional research that can provide greater clarity on the specification
of the matching function and the amount of variation in the matching elasticity. Until consensus is
reached, it is important to consider alternative specifications of the matching function when assess-
ing a model’s ability to produce nonlinear features of the data and its optimal policy prescriptions.

Related Literature Our contribution is to uncover a general mechanism through which the match-
ing function generates nonlinearities in the search and matching model, and to document its posi-
tive and normative implications. Our results build on a growing literature that uses the search and
matching model to analyze business cycle asymmetries and nonlinearities (e.g., Abbritti and Fahr,
2013; Dupraz et al., 2019; Ferraro, 2018; Ferraro and Fiori, 2023; Petrosky-Nadeau and Zhang,
2017; Petrosky-Nadeau et al., 2018; Pizzinelli et al., 2020). While these papers focus on other
mechanisms, we show that the matching function itself is a powerful source of nonlinear dynamics.

The literature has also examined the normative implications of search and matching frictions.
Hairault et al. (2010) and Jung and Kuester (2011) studied how nonlinearities in the search and
matching model affect the welfare cost of business cycles. While they derive conditions that deter-
mine how the shape of the job finding rate function affects welfare, they do not uncover the under-
lying mechanism, which we show depends on offsetting effects that the Cobb-Douglas restriction
obscures. Others have shown how nonlinear search and matching frictions affect optimal policy,
but almost exclusively under a Cobb-Douglas matching function (e.g., Cacciatore et al., 2016; Faia,
2009; Jung and Kuester, 2015; Lepetit, 2020; Ravenna and Walsh, 2011). A notable exception is
Arseneau and Chugh (2012), which shows the optimal labor tax is highly variable using a general
constant returns to scale matching function. We build on that result by tying the volatility of the
optimal labor tax and optimal vacancy subsidy to the cyclicality of the matching elasticity, which
depends on the elasticity of substitution in the matching function. We then show that the elasticity
of substitution has meaningful effects on the responses of the efficient real interest rate to shocks.

Our analysis also sheds light on the properties of the matching function introduced by Den Haan
et al. (2000, DRW), which is used in influential papers such as Hagedorn and Manovskii (2008)
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and Petrosky-Nadeau et al. (2018).1 While that specification has been used interchangeably with
the Cobb-Douglas matching function,2 we show they have different nonlinear properties. In con-
trast with the estimates in Lange and Papageorgiou (2020), the DRW matching function generates
countercyclical variation in the matching elasticity that introduces concavity in the job finding rate
function and amplifies nonlinear labor market dynamics relative to the Cobb-Douglas specifica-
tion. Our results indicate that a CES matching function with a procyclical matching elasticity
would have significantly reduced the nonlinear labor market dynamics generated by these models.

Outline The rest of the paper proceeds as follows. Section 2 provides an overview of the key prop-
erties of the matching function and the empirical estimates of the matching elasticity. Section 3
lays out our search and matching model. Section 4 derives a closed-form solution and characterizes
the sources of nonlinearity. Section 5 quantifies the nonlinearities and their effects on labor market
dynamics. Section 6 shows that our results are robust to introducing endogenous labor force partic-
ipation. Section 7 shows the normative implications of the matching function. Section 8 concludes.

2 OVERVIEW OF MATCHING FUNCTIONS

To motivate our analytical and quantitative exercises, we briefly discuss some useful theoretical
properties of matching functions and review the associated empirical literature that estimates them.
We consider matching functions of the form M(us

t , vt), where us
t measures the search effort of job

seekers (often counts of unemployed workers) and vt measures the recruitment effort of employ-
ers (often counts of vacancy postings). Throughout, we assume M(us

t , vt) is strictly increasing,
strictly concave, and twice differentiable in both arguments, and exhibits constant returns to scale
(see Petrongolo and Pissarides (2001) for an overview of the evidence supporting constant returns).

A key object of theoretical and empirical interest is the elasticity of matches with respect to va-
cancies, which we denote by ϵt = Mv(u

s
t , vt)vt/M(us

t , vt) and refer to as the matching elasticity.
We note that due to constant returns to scale, the matching elasticity depends only on labor market
tightness, θt = vt/u

s
t , and lies in the unit interval: ϵ(θt) = Mv(1, θt)θt/M(1, θt) ∈ (0, 1). Al-

though some papers in the literature focus on the matching elasticity with respect to search effort,
constant returns to scale also implies that Mu(u

s
t , vt)u

s
t/M(us

t , vt) = 1−Mv(u
s
t , vt)vt/M(us

t , vt).
The goal of this paper is to uncover how the statistical properties of the matching elasticity

(e.g., its mean, standard deviation, and cyclicality) affect nonlinear dynamics, given their recent
1Albertini et al. (2021), Bernstein et al. (2021), Dao and Delacroix (2018), Ferraro (2018), Ferraro (2018),

Kandoussi and Langot (2022), Hashimzade and Ortigueira (2005), Mitman and Rabinovich (2015), Petrosky-Nadeau
and Zhang (2017, 2021), Petrosky-Nadeau and Wasmer (2017), Shao and Silos (2013), and Sargent (2022) also use the
DRW matching function. Arseneau and Chugh (2023) show the optimal policy results in Arseneau and Chugh (2012)
are robust to the DRW matching function. Stevens (2007) provides a microfoundation for the DRW matching function.

2When comparing the Cobb-Douglas and Den Haan et al. (2000) matching functions Petrosky-Nadeau and Wasmer
(2017) say the “business cycle moments of the model using either functional form are similar.” The justification for
using the Den Haan et al. (2000) specification is that it restricts the job filling and job finding rates to the unit interval.
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emphasis in the search and matching literature. The following result establishes a benchmark that
applies when restricting attention to linear models. All proofs are contained in the online appendix.

Proposition 1. To a first order, any constant returns to scale matching function is approximately

equivalent to a Cobb-Douglas matching function, M(us
t , vt) = ϕ(us

t)
1−ϵ̄vϵ̄t , where ϕ > 0 is match-

ing efficiency and 0 < ϵ̄ < 1 is a fixed matching elasticity.

The Cobb-Douglas matching function is a common assumption in business cycle research.3 It
imposes that the matching elasticity is invariant to labor market conditions. Proposition 1 shows
that when we restrict attention to linear dynamics, this assumption is without loss of generality.
Intuitively, in a linear model, only the value of the matching elasticity in the deterministic steady
state affects dynamics. This value can be set as a parameter of a Cobb-Douglas matching function.

In this paper, we depart from the special linear case and shed light on the higher-order positive
and normative consequences of the matching function. To lay the foundations, we first establish
how the matching elasticity in general varies with labor market conditions, as measured by labor
market tightness. To do so, it is useful to define the elasticity of substitution between vacancies
and job seekers, σt =

d ln(vt/us
t )

d ln(Mu(us
t ,vt)/Mv(us

t ,vt))
∈ (0,∞), which also only depends on labor market

tightness due to constant returns to scale in the matching function: σ(θt) = d ln θt
d ln(Mu(1,θt)/Mv(1,θt))

.

Proposition 2. The matching elasticity, ϵt = ϵ(θt), is increasing in θt when σt = σ(θt) > 1,

constant when σt = 1, and decreasing in θt when σt < 1.

Recall that the matching elasticity is the marginal product of labor market tightness divided
by the average product: ϵ(θt) = Mv(1, θt)/(M(1, θt)/θt). The effects of tightness on each term
drive the matching elasticity in opposite directions. First, the average product is decreasing in
tightness because a 1% increase in tightness yields a less than 1% increase in matches. This causes
the matching elasticity to increase. Second, the marginal product is decreasing in tightness due to
diminishing returns to vacancy creation. This causes the matching elasticity to decrease. The domi-
nant effect depends on how quickly the marginal product declines, which is governed by the elastic-
ity of substitution. When σ(θt) > 1, high substitutability between vacancies and job seekers slows
the decline in the marginal product, so the first effect dominates and ϵ(θt) is increasing in tightness.

Proposition 2 uncovers a tight relationship between variation in the matching elasticity and the
elasticity of substitution that applies to a general matching function. We obtain further structure if
we are willing to impose a functional form on the matching function. For example, it is common to
assume the matching function is Cobb-Douglas, which is a special case of the general CES family,

M(us
t , v

s
t ) =

ϕ
(
ϑ(us

t)
(σ−1)/σ(1− ϑ)v

(σ−1)/σ
t

)σ/(σ−1)

σ ̸= 1,

ϕ(us
t)

ϑv1−ϑ
t σ = 1,

3See, for example, Ljungqvist and Sargent (2017), Hall and Milgrom (2008), Pissarides (2009), and Shimer (2005).
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where ϕ > 0 is matching efficiency and ϑ ∈ (0, 1) is the importance of job seekers. Under this
specification, the elasticity of substitution, σ(θt) = σ, is fixed and we can strengthen Proposition 2.

Corollary 1. Suppose the matching function is from the CES family. Then σ > 1 implies ϵ′(θt) > 0,

σ = 1 implies ϵ′(θt) = 0, and σ < 1 implies ϵ′(θt) < 0 for all θt > 0.

Since tightness is procyclical in the data and in search and matching models, the choice of σ
globally affects the cyclicality of the matching elasticity. When σ = 1, the matching function is
Cobb-Douglas, and the matching elasticity is constant, ϵt = ϵ̄ = 1 − ϑ. Away from this special
case, higher substitutability (σ > 1) generates procyclical variation in the matching elasticity, while
lower substitutability (σ < 1) implies countercyclical variation. Our analytical and quantitative ex-
ercises will shed light on how the cyclicality of ϵt translates into nonlinear labor market dynamics.

Table 1: Empirical estimates of the matching function

Author(s) Method(s) Sample Parameter Estimates

Cobb-Douglas ϵ̄
Blanchard and Diamond (1989) OLS, AR1 residual 1968-1981 0.54
Bleakley and Fuhrer (1997) OLS with breakpoints 1979-1993 0.31-0.35
Shimer (2005) OLS, AR1 residual 1951-2003 0.28
Hall (2005) OLS 2000-2002 0.77
Rogerson and Shimer (2011) OLS, multiplicative noise 2001-2009 0.42
Michaillat and Saez (2021) OLS with breakpoints 1951-2019 0.51-0.61

Cobb-Douglas with endogeneity correction ϵ̄
Borowczyk-Martins et al. (2013) GMM IV 2000-2012 0.70
Şahin et al. (2014) OLS, GMM IV, varied data 2001-2012 0.24-0.66
Barnichon and Figura (2015) GMM IV 1968-2007 0.34
Sedláček (2016) OLS with non-unemployed 2000-2013 0.24
Hall and Schulhofer-Wohl (2018) OLS with aggregation 2001-2013 0.35

CES ϵ̄ σ
Blanchard and Diamond (1989) NLS, AR1 residual 1968-1981 0.54 0.74
Shimer (2005) NLS, AR1 residual 1951-2003 0.28 1.06
Şahin et al. (2014) GMM IV, varied data 2001-2012 0.24-0.66 0.9-1.2

Non-parametric
Lange and Papageorgiou (2020) Non-parametric 2001-2017 ϵt ∈ (0.15, 0.3) Procyclical

Note: ϵ̄ is a fixed matching elasticity, σ is the elasticity of substitution in the matching function, and ϵt
is a time-varying matching elasticity. Cobb-Douglas lists studies that impose a Cobb-Douglas matching
function. Cobb-Douglas with endogeneity correction lists studies that account for endogeneity and impose
a Cobb-Douglas matching function at the aggregate or job status level. CES lists studies that impose a CES
matching function. Non-parametric lists studies that do not specify a particular matching function.

Empirical Evidence Table 1 summarizes the empirical literature that estimates either a fixed or
time-varying matching elasticity. For brevity and to permit a cleaner comparison of the estimates,
we focus on studies that use U.S. data and impose constant returns to scale in the matching function.
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Early work used aggregate data on hires, vacancies, and unemployment to directly estimate
a log-linear matching function with OLS. Following the logic of Proposition 1, this approach
implicitly assumed a Cobb-Douglas matching function and estimated the fixed matching elasticity.
Due to differences in data sources and samples, the estimates ranged from around 0.3 in Bleakley
and Fuhrer (1997) and Shimer (2005) up to 0.77 in Hall (2005). Furthermore, estimates based on
data from the more recent JOLTS survey (Hall, 2005; Rogerson and Shimer, 2011) are higher than
past estimates based on CPS flows data (Bleakley and Fuhrer, 1997) or the Shimer (2005) method.
More recently, Michaillat and Saez (2021) develop a different approach in which they first estimate
the elasticity of vacancies with respect to unemployment using OLS with breakpoints and then use
a search and matching model to solve for the matching elasticity, which ranges from 0.51 to 0.61.

More recent work developed methods to deal with potential endogeneity due to unobserved
variation in matching efficiency (the ϕ term in the Cobb-Douglas specification above), either by
using instruments (Borowczyk-Martins et al., 2013) or by exploiting heterogeneity in job seekers
(Hall and Schulhofer-Wohl, 2018). In addition, Sedláček (2016) proposed a latent-variable strategy
to deal with unobserved job search by non-unemployed workers. These papers maintained the
Cobb-Douglas assumption at either the aggregate or job status level and generated estimates in the
same range as the estimates that did not correct for endogeneity. The broad range of estimates is
again at least partially due to different data choices, with higher estimates generated by JOLTS
data (Borowczyk-Martins et al., 2013; Şahin et al., 2014) and a lower estimates generated by CPS
flows data (Barnichon and Figura, 2015) or industry-level hires from CPS data (Şahin et al., 2014).

A few papers relax the Cobb-Douglas assumption. Imposing the CES functional form, Blan-
chard and Diamond (1989) estimated an elasticity of substitution of 0.74. More recently, Shimer
(2005) and Şahin et al. (2014) obtained estimates closer to 1 but with larger standard errors, indicat-
ing weak identification. Given Corollary 1, this suggests the cyclicality of the matching elasticity is
highly uncertain. Finally, Lange and Papageorgiou (2020) propose a non-parametric identification
strategy that allows for multiple types of job seekers and incorporates rich measures of search effort
and recruiting intensity to account for possible endogeneity. They estimate a procyclical elasticity
that fluctuates between 0.15 and 0.3, which is consistent with a CES matching function with σ > 1.

Outlook There is considerable uncertainty surrounding the matching elasticity, even when it is as-
sumed to be fixed. Among papers relaxing that assumption, there is additional uncertainty about the
elasticity of substitution between vacancies and job seekers and the cyclicality of the matching elas-
ticity. The most recent and most general econometric specification finds that the matching elasticity
is procyclical, in contrast with the Cobb-Douglas matching function. The lack of consensus and im-
plausibility of a fixed matching elasticity shows why it is important to investigate the implications
of a time-varying matching elasticity. As we will show, even modest variation has significant impli-
cations, which motivates empirical work that can provide greater clarity on the matching function.
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3 ENVIRONMENT

To cleanly demonstrate our results, we use a textbook search and matching model. The one excep-
tion is that we use a general constant returns to scale matching function, rather than assuming a par-
ticular functional form. Each period denotes 1 month and the population (equal to the labor force)
is normalized to unity. Business cycles are driven by shocks to labor productivity, at, which follows

at+1 = ā+ ρa(at − ā) + σaεa,t+1, 0 ≤ ρa < 1, εa ∼ N(0, 1). (1)

Search and Matching Entering period t, there are nt−1 employed workers and ut−1 = 1 − nt−1

unemployed job seekers. In period t, firms post vt vacancies, so the number of matches is given by

mt = min{M(ut−1, vt), ut−1, vt}, (2)

where M is a constant returns to scale matching function that satisfies the assumptions in Section 2.
Given the number of matches, the job finding rate, job filling rate, and laws of motion satisfy

ft = mt/ut−1, (3)

qt = mt/vt, (4)

nt = (1− s̄)nt−1 + ftut−1, (5)

ut = ut−1 + s̄nt−1 − ftut−1, (6)

where ut = 1− nt, s̄ ∈ (0, 1) is the exogenous separation rate, and (2) ensures that ft, qt ∈ [0, 1].

Firms A representative firm chooses vacancies and employment {vt, nt} to solve

Vt = max
vt,nt

atnt − wtnt − κvt + Et[xt+1Vt+1]

subject to nt = (1 − s̄)nt−1 + qtvt and vt ≥ 0, where κ > 0 is the vacancy posting cost, wt is the
wage rate, and Et is an expectation operator conditional on time-t information. The representative
household’s pricing kernel is xt+1 = β(ct/ct+1)

γ , where ct is consumption, β ∈ (0, 1) is the dis-
count factor, and γ ≥ 0 is the coefficient of relative risk aversion.4 The optimality conditions imply

κ−λv,t

qt
= at − wt + (1− s̄)Et

[
xt+1

κ−λv,t+1

qt+1

]
, (7)

λv,tvt = 0, λv,t ≥ 0, (8)

where λv,t is the multiplier on the non-negativity constraint vt ≥ 0. Condition (7) sets the marginal
cost of hiring, (κ − λv,t)/qt, equal to the marginal benefit of hiring, which consists of the flow

4When households are risk averse (γ > 0), we follow the business cycle literature and assume there is perfect
consumption insurance for employed and unemployed workers (Andolfatto, 1996; Den Haan et al., 2000; Merz, 1995).
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profits from the match, at −wt, plus the savings from not having to post the vacancy in the future.

Wages As is common in the search and matching literature, wages are determined through Nash
bargaining between employed workers and the firm. Following the steps in the appendix, we obtain

wt = η(at + κEt[xt+1(vt+1/ut)]) + (1− η)b, (9)

where η ∈ (0, 1) is the worker’s bargaining power and b > 0 is the flow value of unemployment.

Equilibrium The aggregate resource constraint is given by

ct + κvt = atnt. (10)

An equilibrium is infinite sequences of quantities {ct, nt, ut, vt,mt, ft, qt}∞t=0, prices {wt, λv,t}∞t=0,
and productivity {at}∞t=1 that satisfy (1)-(10) given the initial state {n−1, a−1} and shocks {εa,t}∞t=0.

4 ANALYTICAL RESULTS

This section analytically shows the nonlinearity in labor market dynamics is determined by the
curvature of the job finding rate, ft, as a function of the productivity shock, at. To document this
fact, we begin by solving the model under some simplifying assumptions to make it analytically
tractable. Given that solution, we then show the curvature of labor market tightness, θt, as a func-
tion of at is determined by the elasticity of substitution in the matching function, σ, which controls
the cyclicality of the matching elasticity, ϵt, according to Proposition 2. Finally, we show the com-
bination of σ and ϵt determine the shape of the job finding rate function. Hence, there is a direct link
between the specification of the matching function and the nonlinearity in labor market dynamics.

4.1 MODEL SOLUTION To solve the model analytically, we make two simplifying restrictions.

Assumption 1. γ = η = 0.

These conditions imply that workers are risk neutral and have zero bargaining weight, so wages
are sticky with wt = b (Hall, 2005).5 We relax these restrictions in Section 5 for our quantitative ex-
ercises. Given these conditions, we obtain an analytical expression for the marginal cost of hiring.

Proposition 3. Under Assumption 1, the marginal cost of hiring follows the stochastic process

(κ− λv,t)/qt = δ0 + δ1(at − ā), (11)

5An alternative assumption about wages would be to follow Jung and Kuester (2011) and Freund and Rendahl
(2020) and use the ad-hoc linear wage rule wt = ηat + (1− η)b. Our qualitative results are unaffected by this choice.

8



BERNSTEIN, RICHTER & THROCKMORTON: MATCHING FUNCTION

where

δ0 =
ā− b

1− β(1− s̄)
> 0, δ1 =

1

1− β(1− s̄)ρa
> 0,

and λv,t > 0 implies qt = 1.

In (11), δ0 is the steady-state marginal cost of hiring, while δ1 is the response of marginal cost to
changes in productivity. Intuitively, δ1 is increasing in the persistence of the productivity shock ρa.6

In the data, job finding and job filling rates are always strictly positive and strictly less than
unity. In the model, the restriction ft, qt ∈ (0, 1) implies vt > 0, so λv,t = 0. Assuming shocks {at}
are such that this restriction always holds, we can invert (11) to obtain the job filling rate function,

q(at) = κ/(δ0 + δ1(at − ā)), (12)

which is decreasing and convex in productivity. Remarkably, this result does not depend on the
matching function, and instead follows directly from firms’ optimal vacancy creation and the defi-
nition of marginal cost. Intuitively, higher productivity increases vacancy creation, which reduces
the probability of filling any given vacancy. Convexity in the job filling rate arises because as
productivity increases, the probability declines at a slower rate since it is bounded below by zero.

In equilibrium, the job filling rate is determined by labor market tightness. To derive tightness
as a function of productivity, it is convenient to define the auxiliary function µq(θ) = M(1, θ)/θ,
which is strictly decreasing in θ and therefore invertible. Recalling that qt = M(1, θt)/θt, we can
implicitly define the equilibrium tightness function as µq(θ(at)) = q(at), so differentiation implies

θ′(at) = q′(at)/µ
′
q(θ(at)) > 0. (13)

Since q′(at), µ
′
q(θ(at)) < 0, (13) confirms that labor market tightness is increasing in productivity.

Given the equilibrium tightness function, we can use the definitions from Section 2 to define

ϵt =
Mv(1, θ(at))θ(at)

M(1, θ(at))
, σt =

d ln θ(at)

d ln(Mu(1, θ(at))/Mv(1, θ(at)))
,

where ϵt is the matching elasticity and σt is the elasticity of substitution between job seekers and
vacancies. These definitions help us uncover the nonlinearity in equilibrium tightness from θ′′(at).

Proposition 4. Labor market tightness, θ(at), is convex at at when σt > 1/2, linear at at when

σt = 1/2, and concave at at when σt < 1/2.

To interpret these conditions, it is useful to write the slope of the tightness function as

θ′(at) =
δ1
κ

M(1, θ(at))

1− ϵt
,

6Den Haan et al. (2021) independently developed a similar solution to shed light on the effects of volatility shocks.
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which shows that productivity affects θ′(at) through two channels. First, higher productivity gen-
erates more matches, which raises M(1, θ(at)) and θ′(at). Second, higher productivity affects the
matching elasticity. Given Proposition 2, an increase in productivity lowers the matching elasticity
and θ′(at) when σt < 1. If σt < 1/2, this effect dominates the first channel, so tightness is concave
in productivity. When σt = 1/2, the two channels exactly offset, so tightness is linear in produc-
tivity. Finally, when σt > 1/2, the first channel dominates, so tightness is convex in productivity.

Given the equilibrium dynamics of tightness, we can use the matching function to derive the dy-
namics of the job finding rate. Formally, f(at) = M(1, θ(at)), so it is immediate that the job find-
ing rate is increasing in productivity. As with tightness, we analyze its nonlinearity through f ′′(at).

Proposition 5. The job finding rate, ft = f(at), is convex at at when σt > 1/(2ϵt), linear at at
when σt = 1/(2ϵt), and concave at at when σt < 1/(2ϵt).

To interpret these conditions, it is useful to write the slope of the job finding rate function as

f ′(at) = Mv(1, θ(at))θ
′(at),

which shows that productivity also affects f ′(at) through two competing channels. First, higher
productivity raises labor market tightness, which lowers its marginal product, Mv(1, θ(at)), due to
diminishing returns to vacancy creation. This generates concavity in the job finding rate. Second,
higher productivity affects the responsiveness of tightness itself through θ′(at). As Proposition 4
shows, this effect is positive when σt > 1/2, generating convexity. If σt > 1/(2ϵt) > 1/2, it is
strong enough to dominate the first channel, making the job finding rate convex in productivity.
When σt = 1/(2ϵt), the two channels exactly offset, so the finding rate is linear in productivity. Fi-
nally, when σt < 1/(2ϵt), the first channel dominates, so the finding rate is concave in productivity.

More generally, the job finding rate is convex in productivity if the matching elasticity is suf-
ficiently procyclical. Intuitively, a procyclical matching elasticity increases the transmission of
vacancies to matches when productivity increases, which amplifies the finding rate response and
generates convexity. Likewise, the finding rate is concave when the matching elasticity is suffi-
ciently countercyclical, as positive shock responses are dampened by a falling matching elasticity.

If the job finding rate function is convex (f ′′(at) > 0), then a positive productivity shock at at
will have a larger impact on the job finding rate than a negative shock, creating positive skewness
in the ergodic distribution. Conversely, if the job finding rate function is concave (f ′′(at) < 0),
then a negative shock will have a larger impact than a positive shock, creating negative skewness.

Any nonlinearity in the job finding rate will transmit to the unemployment rate. Differentiating
(6) implies ∂ut/∂at = −ut−1f

′(at). Therefore, a concave job finding rate function amplifies non-
linear unemployment dynamics since periods of high unemployment coincide with larger finding

10
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rate responses to productivity shocks. In contrast, a convex job finding function dampens the non-
linearity of unemployment because high unemployment occurs with smaller finding rate responses.

4.2 EXAMPLES Our results thus far are based on a general matching function. By considering
specific functional forms, we can gather additional insights and draw connections to the literature.

CES Matching Function Recall the CES matching function first described in Section 2,

M(ut−1, vt) =

ϕ
(
ϑu

(σ−1)/σ
t−1 + (1− ϑ)v

(σ−1)/σ
t

)σ/(σ−1)

σ ̸= 1,

ϕuϑ
t−1v

1−ϑ
t σ = 1,

(14)

where ϕ > 0 is matching efficiency and ϑ ∈ (0, 1) governs the importance of unemployment.
The elasticity of substitution, σ, is fixed, while the matching elasticity takes the specific form
ϵt = (1−ϑ)(ϕ/q(at))

(σ−1)/σ. In line with Corollary 1, ϵt is procyclical when σ > 1, constant when
σ = 1 (Cobb-Douglas specification), and countercyclical when σ < 1. Using these properties, we
can derive sufficient conditions for global convexity or concavity of the job finding rate function.

Corollary 2. Suppose M(ut−1, vt) satisfies (14). Then σ > 1
2(1−ϑ)ϕ(σ−1)/σ ≥ 1 implies that f(at) is

globally convex, σ < 1
2(1−ϑ)ϕ(σ−1)/σ ≤ 1 implies that f(at) is globally concave, and σ = 1

2(1−ϑ)
= 1

implies that f(at) is globally linear.

Table 1 shows there is a wide range of estimates for the matching elasticity and large standard
errors around the estimates for the elasticity of substitution. Corollary 2 shows that this level of
uncertainty surrounding the parameters of the matching function implies a wide range of possible
outcomes for the nonlinearity in labor market dynamics. Under the typical Cobb-Douglas matching
function where σ = 1, there is very little nonlinearity. As σ gets further below unity, the job finding
rate function becomes increasingly concave, creating negative skewness in labor market dynamics.

DRW Matching Function A small but influential set of papers (e.g., Hagedorn and Manovskii,
2008; Petrosky-Nadeau et al., 2018) use the function introduced by Den Haan et al. (2000, DRW):

M(ut−1, vt) = ut−1vt/(u
ι
t−1 + vιt)

1/ι. (15)

In this case, ι > 0 and the elasticity of substitution is fixed at 1/(1+ι) < 1. The matching elasticity
satisfies ϵt = q(at)

ι and is always countercyclical according to Proposition 2. Thus, this specifi-
cation is inconsistent with the empirical estimates in Lange and Papageorgiou (2020). While it is
often justified by appealing to the fact that it guarantees bounded job finding and filling rates with-
out the feasibility condition (2), it also has significant effects on nonlinear labor market dynamics.

Corollary 3. Suppose M(ut−1, vt) satisfies (15). Then ι > 1 implies f(at) is globally concave.

11
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This shows that any model that uses the DRW matching function with ι > 1 will generate
concavity in the job finding rate function and nonlinear labor market dynamics. For example,
Petrosky-Nadeau et al. (2018) set ι = 1.25 and find that their model generates significant skewness
and kurtosis in the unemployment rate. Replacing the DRW matching function with a CES specifi-
cation that is consistent with the state-of-the art estimates in Lange and Papageorgiou (2020) would
alter the nonlinear properties of the model. Given these implications, it is important to provide a
strong justification for the functional form of the matching function and its underlying parameters.

5 QUANTITATIVE RESULTS

Our analysis thus far highlights the importance of the matching elasticity and elasticity of substitu-
tion. To illustrate that the results derived in Section 4 generalize to a version of the model where the
restrictive assumptions required to get an analytical solution are relaxed, we return to the original
model in Section 3 and specify a CES matching function with ϵ̄ ∈ {0.3, 0.7} and σ ∈ {0.5, 1, 5}.
Our choices for ϵ̄ capture the range of empirical estimates in Table 1. The choice of σ = 0.5

corresponds to ι = 1 under the DRW matching function, which is comparable to values used in
the literature, while σ = 1 is the Cobb-Douglas case. Lange and Papageorgiou (2020) estimate
that the matching elasticity is procyclical with ϵt ranging from 0.15 to 0.3. We chose σ = 5 so the
standard deviation of the matching elasticity in the model covers at most half the empirical range.

Each period in the model denotes 1 month, so the discount factor, β, is set to 0.9983, which cor-
responds to an average annual real interest rate of 2%. The coefficient of relative risk aversion, γ, is
set to 1, consistent with log utility. The remaining parameters are based on U.S. data from 1955 to
2019. The steady-state job separation rate, s̄, is set to its sample mean 0.0326, which we compute
following Shimer (2012). The persistence (ρa = 0.8826) and standard deviation (σa = 0.0062) of
productivity are set to match the autocorrelation and standard deviation of detrended productivity.

To isolate the impact of the matching function on higher-order labor market dynamics, we hold
the mean and standard deviation of the unemployment rate fixed across (σ, ϵ̄) pairs. In particular,
under each specification we estimate the vacancy posting cost, κ, and flow value of unemployment,
b, to target the mean unemployment rate (E(u) = 0.0589) and the standard deviation of the de-
trended unemployment rate (SD(u) = 11.79) in our data sample. In addition, we estimate the bar-
gaining power parameter, η, to target the wage-productivity elasticity (Slope(w, a) = 0.47) follow-
ing Hagedorn and Manovskii (2008).7 Each specification perfectly matches these empirical targets.

7The empirical targets are based on quarterly data. Each period in the model denotes 1 month, so we aggregate the
simulated time series to a quarterly frequency to match the frequency of labor productivity in the data. To facilitate
comparison with the literature, we detrend actual data using a Hodrick and Prescott (1997) filter with a smoothing
parameter of 1,600. We detrend simulated data by computing percent deviations from the short-sample time averages.
The wage rate (wt) is defined as the product of the labor share and labor productivity (at) in the nonfarm business sector
(Hagedorn and Manovskii, 2008). The wage elasticity is the slope coefficient from regressing wt on an intercept and at.
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We set the steady-state job filling rate, q̄, to 0.3306, which corresponds to a quarterly filling
rate of 0.7 (Den Haan et al., 2000). The steady-state job finding rate, f̄ , is endogenously pinned
down by the mean unemployment rate, ū, since f̄ = s̄(1−ū)/ū and ū is determined by the vacancy
posting cost, κ. Given q̄, f̄ , and a (σ, ϵ̄) pair, we pin down ϑ and ϕ using the steady-state restrictions

ϕ =


(
ϵ̄q̄(σ−1)/σ + (1− ϵ̄)f̄ (σ−1)/σ

)σ/(σ−1)
σ ̸= 1,

q̄ϵ̄f̄ 1−ϵ̄ σ = 1,

ϑ = (1− ϵ̄)(f̄/ϕ)(σ−1)/σ.

This ensures each matching function has similar first-order properties, in line with Proposition 1.

Solution Method To quantify the nonlinearities, we solve the model globally using the policy
function iteration algorithm in Richter et al. (2014), which is based on the theoretical work in Cole-
man (1991). The algorithm minimizes the Euler equation errors on each node in the state space and
computes the maximum change in the policy functions. It then iterates until the maximum change
is below a specified tolerance criterion. The appendix describes the solution method in more detail.

Table 2: Estimates and Implied Parameter Values

Low Matching Elasticity (ϵ̄ = 0.3) High Matching Elasticity (ϵ̄ = 0.7)

Low CES C-D High CES Low CES C-D High CES
(σ = 0.5) (σ = 1) (σ = 5) (σ = 0.5) (σ = 1) (σ = 5)

Vacancy Posting Cost (κ) 0.0794 0.0610 0.0507 0.3848 0.3493 0.3367
Flow Value of Unemployment (b) 0.9716 0.9777 0.9815 0.9243 0.9302 0.9328
Worker Bargaining Power (η) 0.1276 0.1320 0.1327 0.0515 0.0534 0.0535

Matching Efficiency (ϕ) 0.4540 0.4645 0.4683 0.3733 0.3811 0.3879
Unemployment Weight (ϑ) 0.5880 0.7000 0.7729 0.2096 0.3000 0.3841

Note: The choices for ϵ̄ capture the range of estimates in the literature. The choice of σ = 0.5 corresponds
to ι = 1 under the DRW matching function, σ = 1 is the Cobb-Douglas case, and σ = 5 is chosen so the
standard deviation of the matching elasticity covers at most half the range in Lange and Papageorgiou (2020).

Estimates Table 2 reports the estimated parameters, (κ, b, η), and the implied matching function
parameters, (ϕ, ϑ), given the steady-state matching elasticity, ϵ̄, and the elasticity of substitution,
σ.8 All of the parameter estimates are in line with values that are commonly used in the literature.

Job Finding Rate Function Section 4 showed the parameters of the matching function affect the
shape of the job finding rate function. Figure 1 quantifies these effects using our choices of ϵ̄ and
σ. Following Proposition 5, the nonlinearity around steady state depends on whether σ ≶ 1/(2ϵ̄).

8Consistent with Hagedorn and Manovskii (2008), the baseline model requires a b that is close to the marginal prod-
uct of labor in order to generate realistic labor market volatility. The appendix shows that if we introduce home pro-
duction, we can set b = 0.4 so it resembles an unemployment benefit while achieving the same labor market volatility.
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Figure 1: Nonlinearity of the job finding rate function.

When ϵ̄ = 0.3, the threshold for convexity is relatively high, so the job finding rate is concave
in the Cobb-Douglas case and features pronounced concavity when σ = 0.5. When ϵ̄ = 0.7, the
threshold is lower, which results in far weaker concavity when σ = 0.5 and mild convexity in the
Cobb-Douglas case. When σ = 5, there is pronounced convexity for both values of ϵ̄. These results
illustrate the importance of the matching function parameters for nonlinear labor market dynamics.

Higher-Order Moments Table 3 shows key untargeted moments across the (σ, ϵ̄) pairs. Consider
first the specifications where ϵ̄ = 0.3, which is close to recent estimates of the mean matching
elasticity reported in Table 1. When σ = 0.5 and the matching elasticity is countercyclical, pos-
itive productivity shocks are dampened relative to negative shocks. As a result, job finding rate
dynamics exhibit significant negative skewness (−1.4), which amplifies the positive skewness and
kurtosis of the unemployment rate (2.37 and 9.78). These outcomes are flipped when σ = 5 and the
matching elasticity is procyclical. The job finding rate becomes positively skewed (0.33), and the
positive skewness and kurtosis of the unemployment rate are considerably weaker (0.29 and 0.04).

Qualitatively similar patterns emerge when ϵ̄ = 0.7, though the differences across σ values
are much less pronounced. In line with the logic from Proposition 5, a higher mean matching
elasticity lowers the threshold that σ must exceed for the job finding rate function to be convex
in productivity. Therefore, there is much less negative skewness when σ = 0.5 (−0.29), which
results in less amplification of the positive skewness and kurtosis of the unemployment rate (0.95
and 1.55). When σ = 5, the job finding rate is even more positively skewed than when ϵ̄ = 0.3

(0.49), which results in almost no skewness or kurtosis in the unemployment rate (0.15 and −0.08).
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Table 3: Higher-Order Labor Market Moments

Low Matching Elasticity (ϵ̄ = 0.3) High Matching Elasticity (ϵ̄ = 0.7)

Low CES C-D High CES Low CES C-D High CES
(σ = 0.5) (σ = 1) (σ = 5) (σ = 0.5) (σ = 1) (σ = 5)

Skew(f) −1.40 −0.58 0.33 −0.29 0.12 0.49
Skew(u) 2.37 1.35 0.29 0.95 0.49 0.15
Kurt(f) 3.35 0.75 0.15 0.08 −0.06 0.32
Kurt(u) 9.78 3.63 0.04 1.55 0.33 −0.08
SD(ϵ) 0.07 0.00 0.07 0.04 0.00 0.03
Corr(ϵ, u) 0.96 0.00 −0.98 0.97 0.00 −0.98

Note: The choices for ϵ̄ capture the range of estimates in the literature. The choice of σ = 0.5 corresponds
to ι = 1 under the DRW matching function, σ = 1 is the Cobb-Douglas case, and σ = 5 is chosen so the
standard deviation of the matching elasticity covers at most half the range in Lange and Papageorgiou (2020).
All (σ, ϵ̄) pairs have the same E(u), SD(u), and Slope(w, a) to isolate the impact of the matching function.

Crucially, the large variation in higher-order labor market moments is driven by modest cyclical
movements in the matching elasticity. When σ ̸= 1, the standard deviation of the matching elas-
ticity ranges from 0.03 to 0.07. This modest variation implies that the matching elasticity would
rarely leave the range of estimates in Table 1, given a mean in that range. It also aligns with the
direct evidence of cyclical variation provided by Lange and Papageorgiou (2020). They find the
matching elasticity is procyclical, varying between 0.15 and 0.30 with a standard deviation of 0.04.
These estimates imply far less nonlinearity in labor market dynamics than the literature has recently
emphasized (e.g., Ferraro, 2018; Petrosky-Nadeau and Zhang, 2017; Petrosky-Nadeau et al., 2018).

The dependence of the higher-order moments on the elasticity of substitution suggests we could
identify σ by adding them as empirical targets. We explored this strategy but did not find it com-
pelling for two reasons. First, the estimate for σ was sensitive to the targeted higher-order moments
(e.g., Skew(u) or Skew(f)) and the steady-state matching elasticity ϵ̄. Second, identifying σ using
higher-order moments assumes that cyclical variation in the matching elasticity is the only driver
of nonlinear dynamics. This contradicts existing work such as Dupraz et al. (2019), who show how
downward wage rigidity can also create nonlinear labor market dynamics. Thus, the estimate of σ
would also be sensitive to the inclusion of model ingredients that affect higher-order moments. The
macro implications of the matching function, instead, motivate additional microeconometric work.

Impulse Responses A growing literature uses the search and matching model as a lens for un-
derstanding deep recessions and business cycle asymmetries (e.g., Dupraz et al., 2019; Petrosky-
Nadeau and Zhang, 2017; Petrosky-Nadeau et al., 2018). Our analysis shows the matching function
specification plays a crucial role in this setting. While the skewness and kurtosis moments capture
some of this effect, Figure 2 provides further context by plotting generalized impulse responses of
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Figure 2: Generalized impulse responses to a −2 SD shock initialized in a recession (u0 = 7.5%). The job
finding and unemployment rates are percentage point changes and the matching elasticity is a level change.

the unemployment and job finding rates to a 2 standard deviation negative productivity shock.9 We
allow for state-dependence by initializing the simulations in a recession (u0 = 7.5%). When we
alternatively initialize the simulations at steady state (u0 = 5.9%), the responses are similar across
matching function specifications. This intuitively follows from the fact that our parameter calibra-
tion strategy ensures that all matching function specifications generate similar first-order dynamics.

Large differences in the impulse responses emerge when the shock hits in a recessionary state

9Following Koop et al. (1996), the response of xt+h over horizon h is given by Gt(xt+h|εa,t+1 = −2, zt) =
Et[xt+h|εa,t+1 = −2, zt]−Et[xt+h|zt], where zt is a vector of initial states and −2 is the shock size in period t+1.
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and the mean matching elasticity is low (ϵ̄ = 0.3). When σ = 0.5 and the job finding rate is a
concave function of productivity, the matching function generates an unemployment rate response
that is more than double the response when σ = 5. The larger response is driven by a larger decline
in the job finding rate, which follows from the countercyclical increase in the matching elasticity.
If the mean matching elasticity is higher (ϵ̄ = 0.7), the differences in the responses across σ are
still apparent, but not as pronounced. This again shows that the average level and cyclicality of the
matching elasticity are important to account for when studying nonlinear business cycle dynamics.

6 LABOR FORCE PARTICIPATION

In our baseline search and matching model in Section 3, the labor force is equal to the population,
as is common in the literature. This section examines the robustness of our results by extending the
baseline model to include endogenous labor force participation, which is an important component
of labor market flows. Following Arseneau and Chugh (2012), the representative household solves

Jt = max
ct,nt,ut

c1−γ
t

1−γ
− ζ

1+ν
(nt + ut)

1+ν + βEtJt+1

subject to

ct = wtnt + dt + but − τt,

nt = (1− s̄)nt−1 + ftut−1,

nt + ut ≤ 1,

where 1/ν is the Frisch elasticity of labor force participation with respect to the real wage and ζ is a
preference parameter that determines the mean participation rate. The optimality conditions imply

ξt = wt − b+ Et[xt+1ξt+1(1− s̄− ft+1)], (16)

ζℓνt c
γ
t + λℓ,tc

γ
t = b+ Et[xt+1ξt+1ft+1], (17)

λℓ,t(1− ℓt) = 0, λℓ,t ≥ 0, (18)

where ℓt ≡ nt+ut is the labor force participation rate, λℓ,t is the multiplier on the labor force con-
straint, and ξt is the marginal value of employment relative to the marginal utility of consumption.
Note the unemployment rate is given by urt ≡ ut/ℓt, since the labor force is no longer equal to 1.

The firm’s problem is unchanged with optimality conditions given by (7) and (8). Nash bargain-
ing between employed workers and the firm leads to the same equilibrium wage rate given by (9).

Endogenous labor force participation introduces two new parameters, ζ and ν, which are esti-
mated to match the mean labor force participation rate (E(ℓ) = 0.633) and the standard deviation
of the detrended labor force participation rate (SD(ℓ) = 0.35). All other parameters are pinned
down using the strategy in Section 5. Each specification perfectly matches the six empirical targets.
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Table 4: Endogenous Labor Force Participation Results

Low Matching Elasticity (ϵ̄ = 0.3) High Matching Elasticity (ϵ̄ = 0.7)

Low CES C-D High CES Low CES C-D High CES
(σ = 0.5) (σ = 1) (σ = 5) (σ = 0.5) (σ = 1) (σ = 5)

Vacancy Posting Cost (κ) 0.0811 0.0629 0.0528 0.3850 0.3659 0.3535
Flow Value of Unemployment (b) 0.9709 0.9770 0.9808 0.9223 0.9268 0.9294
Worker Bargaining Power (η) 0.1283 0.1323 0.1329 0.0545 0.0537 0.0538
Labor Force Utility Weight (ζ) 5.8060 5.9786 6.0398 5.7848 5.4791 5.4860
Labor Force Elasticity (ν) 2.7171 2.7804 2.8023 2.7220 2.5959 2.5982

Matching Efficiency (ϕ) 0.4534 0.4638 0.4680 0.3726 0.3809 0.3877
Unemployment Weight (ϑ) 0.5886 0.7000 0.7728 0.2110 0.3000 0.3838

(a) Estimated and implied parameter values.

Low Matching Elasticity (ϵ̄ = 0.3) High Matching Elasticity (ϵ̄ = 0.7)

Low CES C-D High CES Low CES C-D High CES
(σ = 0.5) (σ = 1) (σ = 5) (σ = 0.5) (σ = 1) (σ = 5)

Skew(f) −1.34 −0.55 0.32 −0.29 0.12 0.47
Skew(ur) 2.35 1.33 0.31 0.95 0.49 0.16
Kurt(f) 3.11 0.66 0.14 0.09 −0.05 0.32
Kurt(ur) 9.96 3.60 0.07 1.61 0.34 −0.06
SD(ϵ) 0.07 0.00 0.07 0.03 0.00 0.03
Corr(ϵ, ur) 0.98 0.00 −1.00 0.99 0.00 −1.00

(b) Higher-order labor market moments.

Note: The choices for ϵ̄ capture the range of estimates in the literature. The choice of σ = 0.5 corresponds
to ι = 1 under the DRW matching function, σ = 1 is the Cobb-Douglas case, and σ = 5 is chosen so
the standard deviation of the matching elasticity covers at most half the range in Lange and Papageorgiou
(2020). All (σ, ϵ̄) pairs have the same E(ur), E(ℓ), SD(ur), SD(ℓ), and Slope(w, a) to isolate the impact
of the matching function. The unemployment rate is ur = u/ℓ, since the labor force is no longer equal to 1.

Table 4 shows the estimated parameters and untargeted higher-order labor market moments, the
analogous results to those shown Table 2 and 3. The estimates for the vacancy posting cost, κ, flow
value of unemployment, b, and worker bargaining power, η, are very similar to the baseline model,
while the estimates for ζ and ν are in line with the values reported in Arseneau and Chugh (2012).

Crucially, the patterns of the higher-order moments across (σ, ϵ̄) pairs are unchanged. When
the steady-state matching elasticity, ϵ̄, and elasticity of substitution in the matching function, σ, are
low, the matching elasticity is countercyclical, which creates significant skewness and kurtosis in
the job finding and unemployment rates. Conversely, when σ is high and the matching elasticity is
procyclical, these nonlinear dynamics are weaker. With a higher ϵ̄, changes in σ generate the same
dynamics, but they are much less pronounced since the job finding rate function has less curvature.

These results show that our baseline results in Section 5 are robustness to endogenous labor
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force participation. This striking similarity in the predictions follows from the fact that the key
conditions of nonlinearity derived in Section 4 are unchanged. If we impose the same assumptions
we previously used for tractability (η = γ = 0), the solution for the job filling rate in Proposition 3
is identical. The curvature of the job finding rate function is also unchanged, since it only depends
on the specification of the matching function and the curvature of labor market tightness that is
pinned down by the solution for the job filling rate. In other words, the labor market dynamics we
are focused on are effectively divorced from the labor force participation decision of the household.

7 NORMATIVE IMPLICATIONS

This section shows the cyclicality of the matching elasticity has normative implications, which af-
fect the wedges that restore efficiency and the response of the efficient real interest rate to shocks.

7.1 EFFICIENT FISCAL POLICY The equilibrium of a search and matching model is generally
inefficient due to two externalities in the matching process (Hosios, 1990). First, when a firm posts
a new vacancy, it imposes a positive externality on unemployed workers who face a higher job
finding rate. Second, the same vacancy posting imposes a negative externality on other firms who
face lower job filling rates and a higher marginal cost of vacancy creation today and in the future.

To show how the cyclicality of the matching elasticity affects the externalities in the matching
process, we follow Arseneau and Chugh (2012) and derive the solution to a planning problem
in which both externalities are internalized using a general matching function, M(ut−1, vt). The
planner’s problem and solution are shown in the appendix. The key optimality condition is given by

κ− λv,t

Mv(ut−1, vt)
= at − b+ Et

[
xt+1

κ− λv,t+1

Mv(ut, vt+1)
(1− s̄−Mu(ut, vt+1))

]
, (19)

which determines the optimal level of vacancy creation by setting the social marginal cost (SMC)
of a vacancy equal to its social marginal benefit (SMB). We then compare this solution to the
private equilibrium shown in Section 3. The gaps between the SMC and SMB and the private
marginal cost (PMC) and private marginal benefit (PMB) reflect inefficiencies of the equilibrium.

To characterize these gaps, we follow the public finance literature and solve for the wedges—
state-dependent, linear taxes—that equate the two solutions. Let τv,t denote a tax on vacancy
creation, vt, and τn,t a tax on a firm’s payroll, nt−1, so that the firm’s flow profits are given by
(at−wt)nt−(1+τv,t)κvt−τn,tnt−1.10 Then the firm’s optimal vacancy creation choice is given by

κ− λv,t

qt
=

1− η

1 + τv,t
(at − b) + Et

[
x̃t+1

κ− λv,t+1

qt+1

(
1− s̄− 1

1 + τv,t+1

qt+1

κ− λv,t+1
(κηθt+1 + τn,t+1)

)]
,

where x̃t+1 ≡ xt+1(1 + τv,t+1)/(1 + τv,t). We can now solve for the wedges that restore efficiency.

10Placing a wedge on nt would be equivalent. We put the wedge on nt−1 since it is easier to compute and interpret.
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Proposition 6. The efficiency-restoring wedges are given by

τv(θt) = (1− η)/ϵ(θt)− 1,

τn(θt) = θt((κ− λv,t)τv(θt)− ηλv,t),

where each wedge is evaluated at the solution to the planning problem. Furthermore, τ ′v(θt) > 0

when σt < 1, and τ ′n(θt) > 0 when σt <
1−η
η

1−ϵt
ϵt

for all θt > 0.

The expression for τv,t shows how the vacancy tax balances the externalities. Note that 1− η is
the ratio of the period-t PMB, (1−η)(at− b), to the period-t SMB, at− b. The matching elasticity
ϵt =

κ/qt
κ/Mv(ut−1,vt)

is the ratio of the PMC to the SMC. The sign of the wedge depends on which
ratio is larger. For example, τv,t > 0 when ϵt < 1 − η and the marginal cost gap is smaller than
the marginal benefit gap. In this case, there is inefficiently high private vacancy creation and the
negative externality on firms dominates the positive externality on workers. A positive vacancy
wedge dampens the incentive for private vacancy creation, restoring efficiency of the equilibrium.

Crucially, τv,t co-moves negatively with the matching elasticity, indicating its time-varying
strength. For example, if the matching function is CES, then the matching elasticity is countercycli-
cal and τv,t is procyclical when σ < 1 because the gap between private and efficient vacancy cre-
ation is larger in booms. In contrast, τv,t is countercyclical when σ > 1 because the gap is larger in
recessions. Finally, in the knife-edge case where σ = 1, the efficient vacancy tax is constant. Thus,
the matching function specification is crucial for implementing efficient taxes on vacancy creation.

The payroll tax accounts for the gap between the period-t + 1 SMB and PMB. Intuitively,
private vacancy creation boosts employment today, which lowers ut and raises the marginal cost
of vacancy creation in the future. A payroll tax is necessary to limit private vacancy creation in
period t and undo the negative externality. Restricting attention to θt > 0 so that λv,t = 0 and τn,t =

κθtτv,t, the variation in the optional labor tax is determined by two forces. The first is procyclical
variation in labor market tightness, θt. The second is variation in τv,t, which is decreasing in labor
market tightness when σt > 1. As long as σt <

1−η
η

1−ϵt
ϵt

, this force is dominated by or amplifies
the first channel so that τn,t is procyclical. Under the typical calibration suggested by Hagedorn
and Manovskii (2008), the Nash bargaining weight, η, tends to be relatively small. Therefore, even
if the elasticity of substitution is greater than one, the optimal labor tax will be highly volatile due
to the procyclical variation in labor market tightness, consistent with Arseneau and Chugh (2012).

7.2 OPTIMAL MONETARY POLICY When the real allocation is efficient, the corresponding real
interest rate, r∗t , serves as the key target for monetary policy in the presence of nominal rigidities.11

11The optimality of targeting r∗t requires appropriate fiscal policies to correct for the matching externalities de-
scribed above and for the inefficient markups created by price-setting power. See Lepetit (2020) for an example of opti-
mal monetary policy without fiscal policies in a search and matching model with the Cobb-Douglas matching function.
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Figure 3: Percentage point responses to a −2 SD shock initialized in a recession (u0 = 7.5%).

To understand how the nonlinearities in the matching function impact the optimal monetary policy
response to productivity shocks, Figure 3 plots generalized impulse responses of r∗t to a 2 standard
deviation negative labor productivity shock when the economy begins in a recession (u0 = 7.5%).12

The responses of r∗t are driven by expected changes in consumption growth. Since the con-
sumption response largely follows the negative of the unemployment rate response in Figure 2, r∗t
inherits its nonlinear dynamics, which are affected by the matching function specification. Con-
sider the responses when ϵ̄ = 0.3. When σ = 0.5, the higher peak unemployment response leads
to a larger decline in consumption and a more volatile r∗t response than when σ = 5. The ini-
tial decline in r∗t occurs because consumption growth first declines in response to the shock, before
increasing as the shock dissipates. This effect disappears when σ = 5 due to the weaker unemploy-
ment response. Similar results emerge when ϵ̄ = 0.7, except the differences in the r∗ responses are
muted with less curvature from the matching function. Just like the optimal wedges, these results
show the importance of knowing the matching function for the conduct of optimal monetary policy.

8 CONCLUSION

The Cobb-Douglas matching function is ubiquitous in search and matching models, even though
it imposes a constant elasticity of matches with respect to vacancies that is unlikely to hold empir-
ically. To examine the implications of this discrepancy, we use a general constant returns to scale
matching function to derive conditions that show how the cyclicality of the matching elasticity af-
fects the shape of the job finding rate as a function of productivity and amplifies or dampens nonlin-

12Following the approach in Section 5, we set the vacancy posting cost, κ, and flow value of unemployment, b, in
the efficient equilibrium so that the mean and standard deviation of the unemployment rate are fixed across (σ, ϵ̄) pairs.
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ear labor market dynamics. We then show these effects are quantitatively large and driven by mod-
est cyclical variation in the matching elasticity that is consistent with recent empirical estimates.

While richer models could affect the strength of the nonlinearities, the Cobb-Douglas match-
ing function is not without loss of generality. The cyclicality of the matching elasticity that ensues
when deviating from Cobb-Douglas would feed into to job finding and unemployment rate dynam-
ics in any search and matching model, so it is important for future research to show how alterna-
tive matching functions affect their results. Furthermore, we hope our analysis motivates empirical
work that provides additional clarity on the true nature of the matching frictions in the labor market.
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